Weak political systems and poor governance in certain developing countries are found to have a war-like environment where structures are being targeted by blasts and bombs. Industrial blasts due to frail know-how and mishandlings are also quite common. Recent accidental explosions like that occurred at the Beirut Port, Lebanon (August 2020); ammunition depot in the outskirt of the Ryazan City of Russia (November 2020) are of concern for the safety of adjacent building infrastructure and their users. Such intense loading events cause damage to certain elements of a structure which may result in disproportionate or progressive collapse. It necessitates a clear understanding of the phenomenon of the blast and extreme loads induced out of it, and response of the target structure under such loadings. In this study, the state of research on air-blast and ground shockwave parameters, shallow underground blasting, and on the ground and buried shallow blast-resistant shelters are presented. The phenomenon of the self-Mach-reflection of the explosion, loading parameters and empirical blast models available in the open literature followed by the damage criteria for the buildings subjected to the underground blasting and available peak particle velocity (PPV) prediction models have been discussed. To make the application of advanced materials such as fibrous concrete, ultra-high performance concrete, FRP composites, etc., it is important to comprehend the existing blast/shock-resistant shelters and their response under such loading. The shelters are primarily designed by incorporating features of the materials like high degree of deformability/ductility, use of the shock-isolation panels and the mechanism for controlling crack formations. Finally, conclusions and recommendations for future studies are summarised. This paper presents prospects to engineers, town planners, researchers, policymakers and members of the core drafting sectional committees to understand the phenomenon of the blast and extreme loads induced out of it.
Nowadays, accidental explosions in residential and factory buildings are common owing to poor maintenance and mishandling of fuel gas and chemical explosive appliances leading to grievous injuries and infrastructure damages. Contact blast on slabs using explosives is noticed as a simpler act of subversion as compared to other components of the building and is more damaging than a close-in blast. In general, damage caused by contact blast is localized in the form of concrete cratering, scabbing, and rupture of the reinforcement. A recently published state-of-the-art review on the performance of reinforced concrete (RC) slabs under contact and close-in explosion loading scenario by the authors (Anas et al., 2021b) reveals the common perception for the location of contact blast to cause maximum damage is the centroid of the slab. It develops a curiosity with sufficient interest to investigate the effect of the location of contact explosive charge on the damage response of the slab. Several numerical techniques such as empirical, ConWEP (semi-empirical), Smooth Particle Hydrodynamics (mesh-free method), and Coupled-Eulerian-Lagrangian (CEL) are in use for simulation of blast loading on structures. Current literature reveals that the CEL is the most advanced and realistic blast modeling technique. This study applies Coupled-Eulerian–Lagrangian (CEL) formulation with finite element method (FEM) using the dynamic computer code ABAQUS/Explicit-v.6.15 to investigate the performance of singly reinforced one-way spanning concrete slab subjected to concentric contact blast loading. The numerical model is validated with the experiment results in the open literature. The validated model is then employed to investigate whether or not the maximum damage is really caused by the central location of the contact blast. For this purpose, one-quarter of the slab with nine symmetrical points (or locations) of contact blast of explosive charge, which reflect the coverage of the entire slab, in contact with the top face of the slab is considered in the study. Two constitutive material models, Concrete Damage Plasticity and Johnson–Cook, with strain rate effects are used to simulate the non-linear behavior of the concrete and steel, respectively. The results reveal that the most critical location of maximum damage to the slab is along the line of symmetry parallel to the supports at an eccentricity of B/4 from the centroid of the slab, where “B” is the width of the one-way slab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.