Reflectance spectroscopy for soil property prediction is a non-invasive, fast, and cost-effective alternative to the standard laboratory analytical procedures. Soil spectroscopy has been under study for decades now with limited application outside research. The recent advancement in precision agriculture and the need for the spatial assessment of soil properties have raised interest in this technique. The performance of soil spectroscopy differs from one site to another depending on the soil’s physical composition and chemical properties but it also depends on the instrumentation, mode of use (in-situ/laboratory), spectral range, and data analysis methods used to correlate reflectance data to soil properties. This paper uses the systematic review procedure developed by the Centre for Evidence-Based Conservation (CEBC) for an evidence-based search of soil property prediction using Visible (V) and Near-InfraRed (NIR) reflectance spectroscopy. Constrained by inclusion criteria and defined methods for literature search and data extraction, a meta-analysis is conducted on 115 articles collated from 30 countries. In addition to the soil properties, findings are also categorized and reported by different aspects like date of publication, journals, countries, employed regression methods, laboratory or in-field conditions, spectra preprocessing methods, samples drying methods, spectroscopy devices, wavelengths, number of sites and samples, and data division into calibration and validation sets. The arithmetic means of the coefficient of determination (R2) over all the reports for different properties ranged from 0.68 to 0.87, with better predictions for carbon and nitrogen content and lower performance for silt and clay. After over 30 years of research on using V-NIR spectroscopy to predict soil properties, this systematic review reveals solid evidence from a literature search that this technology can be relied on as a low-cost and fast alternative for standard methods of soil properties prediction with acceptable accuracy.
Groundwater is a vital source of freshwater, supporting the livelihood of over two billion people worldwide. The quantitative assessment of groundwater resources is critical for sustainable management of this strained resource, particularly as climate warming, population growth, and socioeconomic development further press the water resources. Rapid growth in the availability of a plethora of in-situ and remotely sensed data alongside advancements in data-driven methods and machine learning offer immense opportunities for an improved assessment of groundwater resources at the local to global levels. This systematic review documents the advancements in this field and evaluates the accuracy of various models, following the protocol developed by the Center for Evidence-Based Conservation. A total of 197 original peer-reviewed articles from 2010–2020 and from 28 countries that employ regression machine learning algorithms for groundwater monitoring or prediction are analyzed and their results are aggregated through a meta-analysis. Our analysis points to the capability of machine learning models to monitor/predict different characteristics of groundwater resources effectively and efficiently. Modeling the groundwater level is the most popular application of machine learning models, and the groundwater level in previous time steps is the most employed input data. The feed-forward artificial neural network is the most employed and accurate model, although the model performance does not exhibit a striking dependence on the model choice, but rather the information content of the input variables. Around 10–12 years of data are required to develop an acceptable machine learning model with a monthly temporal resolution. Finally, advances in machine and deep learning algorithms and computational advancements to merge them with physics-based models offer unprecedented opportunities to employ new information, e.g., InSAR data, for increased spatiotemporal resolution and accuracy of groundwater monitoring and prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.