We consider a network creation game in which each player (vertex) has a fixed budget to establish links to other players. In our model, each link has unit price and each agent tries to minimize its cost, which is either its local diameter or its total distance to other players in the (undirected) underlying graph of the created network. Two versions of the game are studied: in the MAX * A preliminary version of this paper appeared in Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2011), pp. 207-214 version, the cost incurred to a vertex is the maximum distance between the vertex and other vertices, and in the SUM version, the cost incurred to a vertex is the sum of distances between the vertex and other vertices. We prove that in both versions pure Nash equilibria exist, but the problem of finding the best response of a vertex is NP-hard. We take the social cost of the created network to be its diameter, and next we study the maximum possible diameter of an equilibrium graph with n vertices in various cases. When the sum of players' budgets is n − 1, the equilibrium graphs are always trees, and we prove that their maximum diameter is Θ(n) and Θ(log n) in MAX and SUM versions, respectively. When each vertex has unit budget (i.e. can establish link to just one vertex), the diameter of any equilibrium graph in either version is Θ(1). We give examples of equilibrium graphs in the MAX version, such that all vertices have positive budgets and yet the diameter is Ω( √ log n). This interesting (and perhaps counter-intuitive) result shows that increasing the budgets may increase the diameter of equilibrium graphs and hence deteriorate the network structure. Then we prove that every equilibrium graph in the SUM version has diameter 2 O( √ log n) . Finally, we show that if the budget of each player is at least k, then every equilibrium graph in the SUM version is k-connected or has diameter smaller than 4.
Abstract. The spread of influence in social networks is studied in two main categories: the progressive model and the non-progressive model (see e.g. the seminal work of Kempe, Kleinberg, and Tardos in KDD 2003). While the progressive models are suitable for modeling the spread of influence in monopolistic settings, non-progressive are more appropriate for modeling non-monopolistic settings, e.g., modeling diffusion of two competing technologies over a social network. Despite the extensive work on the progressive model, non-progressive models have not been studied well. In this paper, we study the spread of influence in the nonprogressive model under the strict majority threshold: given a graph G with a set of initially infected nodes, each node gets infected at time τ iff a majority of its neighbors are infected at time τ − 1. Our goal in the MinPTS problem is to find a minimum-cardinality initial set of infected nodes that would eventually converge to a steady state where all nodes of G are infected. We prove that while the MinPTS is NP-hard for a restricted family of graphs, it admits an improved constant-factor approximation algorithm for power-law graphs. We do so by proving lower and upper bounds in terms of the minimum and maximum degree of nodes in the graph. The upper bound is achieved in turn by applying a natural greedy algorithm. Our experimental evaluation of the greedy algorithm also shows its superior performance compared to other algorithms for a set of realworld graphs as well as the random power-law graphs. Finally, we study the convergence properties of these algorithms and show that the nonprogressive model converges in at most O(|E(G)|) steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.