Accurate estimation of drought events is vital for the mitigation of their adverse consequences on water resources, agriculture and ecosystems. Machine learning algorithms are promising methods for drought prediction as they require less time, minimal inputs, and are relatively less complex than dynamic or physical models. In this study, a combination of machine learning with the Standardized Precipitation Evapotranspiration Index (SPEI) is proposed for analysis of drought within a representative case study in the Tibetan Plateau, China, for the period of 1980-2019. Two timescales of 3 months (SPEI-3) and 6 months (SPEI-6) aggregation were considered. Four machine learning models of Random Forest (RF), the Extreme Gradient Boost (XGB), the Convolutional neural network (CNN) and the Long-term short memory (LSTM) were developed for the estimation of the SPEIs. Seven scenarios of various combinations of climate variables as input were adopted to build the models. The best models were XGB with scenario 5 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed and relative humidity) and RF with scenario 6 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed, relative humidity and sunshine) for estimating SPEI-3. LSTM with scenario 4 (precipitation, average temperature, minimum temperature, maximum temperature, wind speed) was relatively better for SPEI-6 estimation. The best model for SPEI-6 was XGB with scenario 5 and RF with scenario 7 (all input climate variables, i.e., scenario 6 + solar radiation). Based on the NSE index, the performances of XGB and RF models are classified as good fits for scenarios 4 to 7 for both timescales. The developed models produced satisfactory results and they could be used as a rapid tool for decision making by water-managers.
After wheat, rice is one of the most important agricultural products in the world, and Iran has a special position here with annual production of more than 2 million t of rice. Evaluation of crop yield has an important role in agricultural policy making due to different conditions and restrictions. Estimating rice yield is a key factor in food security. Any change in the effective parameters can cause changes in rice yield and therefore the food security of the population will be affected. In this study, rice crop yield was estimated by artificial neural networks (ANNs) and ANN‐genetic programming (GP) in 2011 and 2015. Rainfall, permeability, soil texture, land type, evapotranspiration and inlet and inflow and outflow water to paddy lands were used as inputs. The results showed that the ANN‐GP with a root mean square error (RMSE = 80.8 kg ha‾¹) and a correlation coefficient (CC = 0.91) was more accurate than the stand‐alone ANN (with RMSE = 139 kg ha‾¹ and CC = 0.67). Finally, the effect of each input parameter on rice yield was evaluated. Irrigation, drainage and soil type parameters had the best impact rank, with 36, 28 and 31%, respectively. Therefore, the proposed method can act as an efficient tool in estimating rice yield and help decision makers to manage and develop the agricultural system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.