This study aims to investigate the performance of disc, conventional screen, and automatic screen filters when rainbow trout fish effluent is used for irrigation. The experiments were performed in a fish farm, located in the north-west of Iran. The disc and conventional screen filters were tested at pressures of 150 and 300 kPa, and the automatic screen filter at 200 and 300 kPa. The filtration experiments continued until the backwashing was reached. The results showed that (1) the initial head loss of disc and conventional screen filters was 40 kPa, while for the automatic screen filter was 5 kPa. (2) In the disc filter, with increasing working pressure, the filtered volume significantly (P<0.05) increased from 9.7 to 14.5 m 3 m -2 (10 kPa) -1 , but for conventional and automatic screen filters, it was constant at 5.5 and 7.0 m 3 m -2 (10 kPa) -1 , respectively, and all of them had significant (P<0.05) differences. (3) In the disc filter, with increasing the working pressure, the filtered volume to reach backwashing significantly (P<0.01) increased from 80.9 to 104.4 m 3 m -2 , while in the conventional screen filter increased from 14.1 to 16.4 m 3 m -2 . This volume at two working pressures was 29.5 m 3 m -2 for the automatic screen filter. These volumes were significantly different (P<0.01) between filters.(4) The mass retention for the disc, conventional, and automatic screen filters were 28.88, 9.11, and 7.72 g min -1 m -2 , respectively and tended to increase at lower working pressures. Based on this index, the difference in the performance of the filters was significant (P<0.01). ( 5) Overall, the best performance was for the disc filter, and after that was the automatic screen filters, but the period of time to operate for the filters until backwashing time was less than half an hour, which is not applicable under farm conditions.
In this study, the hydraulic jumps over rough beds are numerically simulated. In order to calibrate the numerical model, the experimental data were used, which performed in a rectangular flume in various roughness arrangements and different Froude numbers. The effect of the distance (s) and the height (t) of the roughness on different characteristics of the hydraulic jump, including the sequent depth ratio, water surface profile, jump’s length, roller’s length, and velocity distribution were evaluated and compared. The results showed that the numerical model is fairly well able to simulate the hydraulic jump characteristics. The results also showed that the height and distance of roughness slightly reduced the sequent depth ratios for all Froude numbers. Also, the hydraulic jump length is reduced at the presence of the rough bed. Velocity profiles in different experiments were similar and there was a good agreement between simulated and measured results. Also, increasing the distance and the height of the roughness will slow down the velocity near the bed, increase the shear stress, and increase the gradient of the velocity distribution near the bed.
Water resources systems, as facilities for storing water and supplying demands, have been critically important due to their operational requirements. This paper presents the applications of an R package in a large-scale water resources operation. The WRSS (Water Resources System Simulator) is an object-oriented open-source package for the modeling and simulation of water resources systems based on Standard Operation Policy (SOP). The package provides R users several functions and methods to build water supply and energy models, manipulate their components, create scenarios, and publish and visualize the results. WRSS is capable of incorporating various components of a complex supply–demand system, including numerous reservoirs, aquifers, diversions, rivers, junctions, and demand nodes, as well as hydropower analysis, which have not been presented in any other R packages. For the WRSS’s development, a novel coding system was devised, allowing the water resources components to interact with one another by transferring the mass in terms of seepage, leakage, spillage, and return-flow. With regard to the running time, as a key factor in complex models, WRSS outshone the existing commercial tools such as the Water Evaluation and Planning System (WEAP) significantly by reducing the processing time by 50 times for a single unit reservoir. Additionally, the WRSS was successfully applied to a large-scale water resources system comprising of 5 medium- to large-size dams with 11 demand nodes. The results suggested dams with larger capacity sizes may meet agriculture sector demand but smaller capacities to fulfill environmental water requirement. Additionally, large-scale approach modeling in the operation of one of the studied dams indicated its implication on the reservoirs supply resiliency by increasing 10 percent of inflow compared with single unit operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.