<p>Successive occurrence of floods across north-west England over the course of the past few years has resulted in the need for the local authorities and decision makers to (re-) assess several flood management schemes. However, ongoing decision-making on how flood control measures are constructed, is frequently still made on the basis of the assumption that the flood characteristics of catchments have remained constant over time (i.e., stationarity). To verify the validity of this assumptions, non-parametric tests alongside change-permitting flood frequency frameworks based on Generalized Logistic distribution model (as the recommended model in the UK catchments) have been applied to a dataset of extreme peak river flow measurements across the region (39 catchments with up to 75 years of records). Allowing the location parameter of the model to change linearly with time, cumulative annual rainfall and cumulative annual temperature as covariates, one stationary as well as six non-stationary models have been introduced. The regional non-stationary frequency results indicate a notable improvement over the stationary predictions, estimating design flood quantiles (i.e., 100-year events) up to 75% larger than classic stationary estimates. Moreover, the vast majority of rivers demonstrate statistically significant changes (mainly driven by cumulative annual rainfall), specifically in the late 1990s. This indicates that non-stationary models should be taken into consideration, along with the traditional stationary ones to help understanding the changes in the peak river flow regimes across the north-west England.</p>
Water resources systems, as facilities for storing water and supplying demands, have been critically important due to their operational requirements. This paper presents the applications of an R package in a large-scale water resources operation. The WRSS (Water Resources System Simulator) is an object-oriented open-source package for the modeling and simulation of water resources systems based on Standard Operation Policy (SOP). The package provides R users several functions and methods to build water supply and energy models, manipulate their components, create scenarios, and publish and visualize the results. WRSS is capable of incorporating various components of a complex supply–demand system, including numerous reservoirs, aquifers, diversions, rivers, junctions, and demand nodes, as well as hydropower analysis, which have not been presented in any other R packages. For the WRSS’s development, a novel coding system was devised, allowing the water resources components to interact with one another by transferring the mass in terms of seepage, leakage, spillage, and return-flow. With regard to the running time, as a key factor in complex models, WRSS outshone the existing commercial tools such as the Water Evaluation and Planning System (WEAP) significantly by reducing the processing time by 50 times for a single unit reservoir. Additionally, the WRSS was successfully applied to a large-scale water resources system comprising of 5 medium- to large-size dams with 11 demand nodes. The results suggested dams with larger capacity sizes may meet agriculture sector demand but smaller capacities to fulfill environmental water requirement. Additionally, large-scale approach modeling in the operation of one of the studied dams indicated its implication on the reservoirs supply resiliency by increasing 10 percent of inflow compared with single unit operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.