We present a physics-based training simulator for bone machining. Based on experimental studies, the energy required to remove a unit volume of bone is a constant for every particular bone material. We use this physical principle to obtain the forces required to remove bone material with a milling tool rotating at high speed. The rotating blades of the tool are modeled as a set of small cutting elements. The force of interaction between a cutting element and bone is calculated from the energy required to remove a bone chip with an estimated thickness and known material stiffness. The total force acting on the cutter at a particular instant is obtained by integrating the differential forces over all cutting elements engaged. A voxel representation is used to represent the virtual bone and removed chips for calculating forces of machining. We use voxels that carry bone material properties to represent the volumetric haptic body and to apply underlying physical changes during machining. Experimental results of machining samples of a real bone confirm the force model. A real-time haptic implementation of the method in a dental training simulator is described.
The use of multishaft industrial gas turbines is expanding in various industries because of variation in their structure, flexibility, and their appropriate power generation range. In this study, a semi-simplified black-box dynamic modeling has been done for the three-shaft gas turbine MGT-30. Modeling is done in such a way that all the important variables can be calculated and evaluated. One of the important parameters in dynamic modeling of gas turbine is the time lag relevant to the performance properties of sensors and actuators of the system. In this study, in order to measure the transfer function, physical and actual characteristics of the system were applied. Depending on the type of thermocouples (TCs) used, their activation time was eliminated using a lead compensator. In modeling of the system, the functions were related to the implementation of off-design conditions for compliance with the outputs of a real system model, and outputs were presented proportional to the rate and type of changes for each variable. Finally, validation was done by comparing the power-turbine generated power, exhaust gas temperatures downstream of low pressure (LP) turbine, and speeds of LP and high-pressure (HP) turbines with the real values of Qeshm turbogenerator power plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.