The democratization of thermoplastic 3D printing is rooted in the ease of processing enabled by economical melting and shaping. Thermosetting polymers, on the other hand, have not enjoyed this advantage given that thermosetting resins cannot hold their shape without cross-linking or excessive fillers, and once cross-linked, they cannot be extruded for printing. Due to this formidable challenge, thus far, 3D printing of thermosetting polymers has been limited to the photopolymerization of specialized photosensitive resins or extrusion of resins loaded with large fractions (as high as 20 wt %) of rheology modifiers. Here, we report a rheology-modifier- and photoinitiator-free process for the 3D printing of a pure commercial epoxy polymer, without any resin modification and using a conventional 3D printer. A low-cost non-Newtonian support material that switches between solid–fluid states under a nozzle shear stress enables the printing of complex 3D structures and the subsequent and ″one-step″ curing. Our results show that the one-step curing eliminates the often-compromised interlayer adhesion common in layer-by-layer 3D printing processes and results in unprecedented isotropic mechanical properties (strength, elastic modulus, tensile toughness, and strain to failure). This in-bath print and cure (IBPC) 3D printing process for thermosetting polymers is low-cost, scalable, high-speed (nozzle speeds exceeding 720 cm/min), and high-resolution (down to 220 μm filament size). We demonstrate potential applications for hobbyists, structural and aerospace components, and fiber-reinforced composites, among others.
Achieving a viable process for three-dimensional (3D) printing of ceramics is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. Low laser absorption of ceramic powders renders available additive manufacturing (AM) technologies for metals not suitable for ceramics. Polymer solutions that can be converted to ceramics (preceramic polymers) offer a unique opportunity to 3D-print ceramics; however, due to the low viscosity of these polymers, so far, their 3D printing has only been possible by combining them with specialized light-sensitive agents and subsequently cross-linking them layer by layer by rastering an optical beam. The slow rate, lack of scalability to large specimens, and specialized chemistry requirements of this optical process are fundamental limitations. Here, we demonstrate 3D printing of ceramics enabled by dispensing the preceramic polymer at the tip of a moving nozzle into a gel that can reversibly switch between fluid and solid states, and subsequently thermally cross-linking the entire printed part "at-once" while still inside the same gel. The solid gel, which is composed of mineral oil and silica nanoparticles, converts to fluid at the tip of the moving nozzle, allows the polymer solution to be dispensed, and quickly returns to a solid state to maintain the geometry of the printed polymer both during printing and the subsequent high-temperature (160 °C) cross-linking. We retrieve the cross-linked part from the gel and convert it to ceramic by high-temperature pyrolysis. This scalable process opens up new opportunities for low-cost and high-speed production of complex three-dimensional ceramic parts and will be widely used for high temperature and corrosive environment applications, including electronics and sensors, microelectromechanical systems, energy and structural applications.
Porous yttriastabilized zirconia (YSZ), in a composite with NiO, is widely used as a cermet electrode in solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). Given cycles of high temperature in these energy devices, mechanical integrity of the porous YSZ is critical. Pore morphology, as well as properties of the ceramic, ultimately affect the mechanical properties of the cermet electrode. Here, we fabricated porous YSZ sheets via freezing of an aqueous slurry on a cold thermoelectric plate and quantified their flexural properties, both for as-fabricated samples and samples subjected to thermal shock at 200 °C to 500 °C. Results of this work have implications for the hydrogen economy and global decarbonization efforts, in particular for the manufacturing of SOFCs and SOECs.
Preceramic polymer resins are attractive for the 3D printing of net-shaped ceramic components. Recently various processes have been demonstrated for 3D printing of polymer-derived ceramics (PDCs). Ultimately in these processes, the process outcomes strongly depend on the process parameters. In particular, for PDCs the ceramic density, and ceramic yield are affected by the catalyst concentration and cross-linking duration. Here, we use thermal analysis and FTIR to quantify the interrelation of the process parameters on the process outcome for polysilazanes and demonstrate 3D printing of PDC components based on the best-identified process parameters. The results of this work can be used as guidelines for future additive manufacturing of PDCs.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.