Spatial learning is critical for survival and its underlying neuronal mechanisms have been studied extensively. These studies have revealed a wealth of information about the neural representations of space, such as place cells and boundary cells. While many studies have focused on how these representations emerge in the brain, their functional role in driving spatial learning and navigation has received much less attention. We extended an existing computational modeling tool-chain to study the functional role of spatial representations using closed-loop simulations of spatial learning. At the heart of the model agent was a spiking neural network that formed a ring attractor. This network received inputs from place and boundary cells and the location of the activity bump in this network was the output. This output determined the movement directions of the agent. We found that the navigation performance depended on the parameters of the place cell input, such as their number, the place field sizes, and peak firing rate, as well as, unsurprisingly, the size of the goal zone. The dependence on the place cell parameters could be accounted for by just a single variable, the overlap index, but this dependence was nonmonotonic. By contrast, performance scaled monotonically with the Fisher information of the place cell population. Our results therefore demonstrate that efficiently encoding spatial information is critical for navigation performance.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.