The particle formation process for microparticles of cellulose acetate butyrate dried from an acetone solution was investigated experimentally and theoretically. A monodisperse droplet chain was used to produce solution microdroplets in a size range of 55-70 μm with solution concentrations of 0.37 and 10 mg/mL. As the droplets dried in a laminar air flow with a temperature of 30, 40, or 55 °C, the particle formation process was recorded by two independent optical methods. Dried particles in a size range of 10-30 μm were collected for morphology analysis, showing hollow, elongated particles whose structure was dependent on the drying gas temperature and initial solution concentration. The setup allowed comprehensive measurements of the particle formation process to be made, including the period after initial shell formation. The early particle formation process for this system was controlled by the diffusion of cellulose acetate butyrate in the liquid phase, whereas later stages of the process were dominated by shell buckling and folding.
Theoretical models were applied to successfully achieve complex formulations with design challenges a priori. No further iterations to the design process were required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.