Vegetable oil (n = 81) for human consumption from Khartoum State in Sudan were analyzed for aflatoxins (AFs), using high-performance liquid chromatography (HPLC) with fluorescence detection following extraction with methanol:water (80:20) and clean-up using petroleum ether. Sampling included sesame oil (n = 14), peanut oil (n = 21), and sunflower oil (n = 19) purchased from retail shops, and mixed oil produced by two local manufacturers (factory A, n = 15; factory B, n = 12). AF contamination was found in 80/81 (98.8%) samples, with total AF levels [Formula: see text] of 0.43-339.9 µg/kg and mean level of 57.5 µg/kg. All sesame oils had total AF levels that were much higher than the United States Food and Drug Administration acceptable limit of 20 µg/kg. The percentage of samples with total AF values <20 µg/kg in other oils varied and was 57.14% in peanut oil, 36.8% in sunflower oil, 66.7% (mixed oil from factory A), and 91.7% (mixed oil from factory B). In conclusion, the levels of total AFs in edible oil as available in Khartoum State are quite alarming. To reduce the health hazards for the consumers, an intervention strategy to manage AFs in food commodities from Sudan is urgently required.
This study reports using a droplet flow assisted mechanism to enhance the electrocatalytic oxidation of benzyl alcohol, 2-phenoxyethanol, and hydroxymethylfurfural at room temperature. Cobalt phosphide (CoP) was employed as an active electrocatalyst to promote the oxidation of each of the individual substrates. Surface analysis of the CoP electrocatalyst using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), as well as electrochemical characterization, revealed that it had excellent catalytic activity for each of the substrates studied. The combined droplet flow with the continuous flow electrochemical oxidation approach significantly enhanced the conversion and selectivity of the transformation reactions. The results of this investigation show that at an electrolysis potential of 1.3 V and ambient conditions, both the selectivity and yield of aldehyde from substrate conversion can reach 97.0%.
An efficient method of photocatalytic degradation of methylparaben in water using Ag nanoparticles (NPs) loaded AgBr‐mesoporous‐WO3 composite photocatalyst (Ag/AgBr@m‐WO3), under visible light is presented. In this process, quantification of methylparaben in water was carried out by high‐performance liquid chromatography (HPLC) and the HPLC results showed a significant reduction of methylparaben in water due to the enhanced of photocatalytic degradation efficiency of Ag/AgBr@m‐WO3. For the material synthesis, highly ordered mesoporous‐WO3 (m‐WO3) was initially synthesized by sol–gel method and AgBr nanoparticles (NPs) were subsequently introduced in the pores of m‐WO3, and finally, the Ag nanoparticles were introduced by light irradiation. The enhanced photocatalytic degradation of methylparaben in water is attributed to the formation of surface plasmonic resonance (SPR) due to the introduction of Ag NPs on the surface of the catalyst. Also, the formation of heterojunction between AgBr and mesoporous‐WO3 in Ag/AgBr@m‐WO3 significantly inhibited the recombination of light‐induced electron‐hole pairs in the semiconductor composite. The morphological and optical characterizations of the synthesized photocatalysts (Ag/AgBr@m‐WO3) were carried out using SEM, TEM, XDR, N2 adsorption–desorption, UV‐VIS diffuse reflectance spectroscopy (DRS). Also, the photocatalytic studies using radical scavengers were carried out and the results indicated that O2·- is the main reactive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.