Cardiovascular diseases and diabetes are the biggest causes of death globally. Therefore, prevention of these diseases is a focus of pharmaceuticals and functional food manufacturers. This review summarizes recent research trends and scientific knowledge in seaweed protein-derived peptides with particular emphasis on production, isolation and potential health impacts in prevention of hypertension, diabetes and oxidative stress. The current status and future prospects of bioactive peptides are also discussed. Bioactive peptides have strong potential for use in therapeutic drug and functional food formulation in health management strategy, especially cardiovascular disease and diabetes. Seaweeds can be used as sustainable protein sources in the production of these peptide-based drugs and functional foods for preventing such diseases. Many studies have reported that peptides showing angiotensin converting enzyme inhibition, antihypertensive, antioxidative and antidiabetics activities, have been successfully isolated from seaweed. However, further research is needed in large-scale production of these peptides, efficient isolation methods, interactions with functional foods and other pharmaceuticals, and their ease to digestion in in vivo studies and safety to validate the health benefits of these peptides.
Inhibition of α-amylase enzyme is one therapeutic approach in lowering glucose level in the blood to manage diabetes mellitus. In this study α-amylase inhibitory peptides were identified from proteolytic enzymes hydrolysates of red seaweed laver ( Porphyra species) using consecutive chromatographic techniques. In the resultant fractions from RP-HPLC (D-), D inhibited α-amylase activity (88.67 ± 1.05%) significantly ( p ≤ 0.5) at 1 mg/mL protein concentration. A mass spectrometry (ESI-Q-TOF- MS) analysis was used to identify peptides from this fraction. Two novel peptides were identified as Gly-Gly-Ser-Lys and Glu-Leu-Ser. To validate their α-amylase inhibitory activity, these peptides were synthesized chemically. The peptides were demonstrated inhibitory activity at IC value: 2.58 ± 0.08 mM (Gly-Gly-Ser-Lys) and 2.62 ± 0.05 mM (Glu-Leu-Ser). The inhibitory kinetics revealed that these peptides exhibited noncompetitive binding mode. Thus, laver can be a potential source of novel ingredients in food and pharmaceuticals in diabetes mellitus management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.