CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies.
The effect of (NH 4 ) 2 S and CS 2 chemical etches on surface chemistry and contacting in Sb 2 Se 3 solar cells was investigated via a combination of x-ray photoemission spectroscopy (XPS) and photovoltaic device analysis. Thin film solar cells were produced in superstrate configuration with an absorber layer deposited by close space sublimation. Devices of up to 5.7% efficiency were compared via currentvoltage measurements (J-V ) and temperature-dependent current-voltage (J-V-T) analysis. XPS analysis demonstrated that both etching processes were successful in removing Sb 2 O 3 contamination, while there was no decrease in free elemental selenium content by either etch, in contrast to prior work. Using J-V-T analysis the removal of Sb 2 O 3 at the back surface in etched samples was found to improve contacting by reducing the potential barrier at the back contact from 0.43 eV to 0.26 eV and lowering the series resistance. However, J-V data showed that due to the decrease in shunt resistance and short-circuit current as a result of etching, the devices show a lower efficiency following both etches, despite a lowering of the series resistance. Further optimisation of the etching process yielded an improved efficiency of 6.6%. This work elucidates the role of surface treatments in Sb 2 Se 3 devices and resolves inconsistencies in previously published works.
We investigated the formation of photovoltaic (PV) devices using direct n-Si/MAPI (methylammonium lead tri-iodide) two-sided heterojunctions for the first time (as a possible alternative to two-terminal tandem devices) in which charge might be generated and collected from both the Si and MAPI. Test structures were used to establish that the n-Si/MAPI junction was photoactive and that spiro-OMeTAD acted as a "pinhole blocking" layer in n-Si/MAPI devices. Two-terminal "substrate" geometry devices comprising Al/n-Si/MAPI/spiro-OMeTAD/Au were fabricated and the effects of changing the thickness of the semitransparent gold electrode and the silicon resistivity were investigated. External quantum efficiency and capacitance-voltage measurements determined that the junction was one-sided in the silicon-and that the majority of the photocurrent was generated in the silicon, with there being a sharp cutoff in photoresponse above the MAPI bandgap. Construction of band diagrams indicated the presence of an upward valence band spike of up to 0.5 eV at the n-Si/MAPI interface that could impede carrier flow. Evidence for hole accumulation at this feature was seen in both Kelvin-probe transients and from unusual features in both current-voltage and capacitance-voltage measurements. The devices achieved a hysteresis-free best power conversion efficiency of 2.08%, V OC 0.46 V, J SC 11.77 mA/cm 2 , and FF 38.4%, demonstrating for the first time that it is possible to create a heterojunction PV device directly between the MAPI and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.