Graphene has emerged as an ultrafast optoelectronic material for all-optical modulators. However, because of its atomic thickness, it absorbs a limited amount of light. For that reason, graphene-based all-optical modulators suffer from either low modulation efficiencies or high switching energies. Through plasmonic means, these modulators can overcome the aforementioned challenges, yet the insertion loss (IL) of plasmon-enhanced modulators can be a major drawback. Herein, we propose a plasmon-enhanced graphene all-optical modulator that can be integrated into the silicon-on-insulator platform. The device performance is quantified by investigating its switching energy, extinction ratio (ER), IL, and operation speed. Theoretically, it achieves ultrafast (<120 fs) and energy-efficient (<0.6 pJ) switching. In addition, it can operate with an ultra-high bandwidth beyond 100 GHz. Simulation results reveal that a high ER of 3.5 dB can be realized for a 12 μm long modulator, yielding a modulation efficiency of ∼0.28 dB/μm. Moreover, it is characterized by a 6.2 dB IL, which is the lowest IL reported for a plasmon-enhanced graphene all-optical modulator.
Graphene has emerged as an ultrafast optoelectronic material for on-chip photodetector applications. The 2D nature of graphene enables its facile integration with complementary metal–oxide semiconductor (CMOS) microelectronics and silicon photonics, yet graphene absorbs only ∼ 2.3 % of light. Plasmonic metals can enhance the responsivity of graphene photodetectors, but may result in CMOS-incompatible devices, depending on the choice of metal. Here we propose a plasmon-enhanced photothermoelectric graphene detector using CMOS-compatible titanium nitride on the silicon-on-insulator platform. The device performance is quantified by its responsivity, operation speed, and noise equivalent power. Its bandwidth exceeds 100 GHz, and it exhibits a nearly flat photoresponse across the telecom C-band. The photodetector responsivity is as high as 1.4 A/W (1.1 A/W external) at an ultra-compact length of 3.5 µm, which is the most compact footprint reported for a graphene-based waveguide photodetector. Furthermore, it operates at zero-bias, consumes zero energy, and has an ultra-low intrinsic noise equivalent power ( N E P <2022
Graphene has emerged as an ultrafast photonic material for on-chip all-optical switching applications. However, its atomic thickness limits its interaction with guided optical modes, resulting in a high switching energy per bit. Herein, we propose a novel technique to electrically control the switching energy of an all-optical graphene switch on a silicon nitride waveguide. Using this technique, we theoretically demonstrate a 120 µm long all-optical graphene switch with an 8.9 dB extinction ratio, 2.4 dB insertion loss, a switching time of <100 fs, a fall time of <5 ps, and a 235 fJ switching energy at 2.5 V bias, where the applied voltage reduces the switching energy by ∼ 16 × . This technique paves the way for the emergence of ultra-efficient all-optical graphene switches that will meet the energy demands of next-generation photonic computing systems, and it is a promising alternative to lossy plasmon-enhanced devices.
Graphene has emerged as an ultrafast photonic material for on-chip photodetection. However, its atomic thickness limits its interaction with guided optical modes, which in turn weakens the photoresponse of waveguide-integrated graphene photodetectors. Nonetheless, it is possible to enhance the interaction of guided light with graphene by nanophotonic means. Herein, we propose a practical design of a plasmon-enhanced photovoltaic double-graphene detector that is integrated into 5 µm long titanium nitride slot waveguides. The use of double-graphene in this configuration yields a high responsivity of 2.18 A/W and more for a 0.5 V bias, across the telecom C-band and beyond. Moreover, the device operates at an ultra-high-speed beyond 100 GHz with an ultra-low noise equivalent power of < 35 pW/ √ Hz. The reported features are highly promising and are expected to serve the needs of next-generation optical interconnects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.