Objective We implement 2 different multitask learning (MTL) techniques, hard parameter sharing and cross-stitch, to train a word-level convolutional neural network (CNN) specifically designed for automatic extraction of cancer data from unstructured text in pathology reports. We show the importance of learning related information extraction (IE) tasks leveraging shared representations across the tasks to achieve state-of-the-art performance in classification accuracy and computational efficiency. Materials and Methods Multitask CNN (MTCNN) attempts to tackle document information extraction by learning to extract multiple key cancer characteristics simultaneously. We trained our MTCNN to perform 5 information extraction tasks: (1) primary cancer site (65 classes), (2) laterality (4 classes), (3) behavior (3 classes), (4) histological type (63 classes), and (5) histological grade (5 classes). We evaluated the performance on a corpus of 95 231 pathology documents (71 223 unique tumors) obtained from the Louisiana Tumor Registry. We compared the performance of the MTCNN models against single-task CNN models and 2 traditional machine learning approaches, namely support vector machine (SVM) and random forest classifier (RFC). Results MTCNNs offered superior performance across all 5 tasks in terms of classification accuracy as compared with the other machine learning models. Based on retrospective evaluation, the hard parameter sharing and cross-stitch MTCNN models correctly classified 59.04% and 57.93% of the pathology reports respectively across all 5 tasks. The baseline models achieved 53.68% (CNN), 46.37% (RFC), and 36.75% (SVM). Based on prospective evaluation, the percentages of correctly classified cases across the 5 tasks were 60.11% (hard parameter sharing), 58.13% (cross-stitch), 51.30% (single-task CNN), 42.07% (RFC), and 35.16% (SVM). Moreover, hard parameter sharing MTCNNs outperformed the other models in computational efficiency by using about the same number of trainable parameters as a single-task CNN. Conclusions The hard parameter sharing MTCNN offers superior classification accuracy for automated coding support of pathology documents across a wide range of cancers and multiple information extraction tasks while maintaining similar training and inference time as those of a single task–specific model.
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in late 2019 and created a global pandemic that overwhelmed healthcare systems. COVID-19, as of July 3, 2021, yielded 182 million confirmed cases and 3.9 million deaths globally according to the World Health Organization. Several patients who were initially diagnosed with mild or moderate COVID-19 later deteriorated and were reclassified to severe disease type. Objective The aim is to create a predictive model for COVID-19 ventilatory support and mortality early on from baseline (at the time of diagnosis) and routinely collected data of each patient (CXR, CBC, demographics, and patient history). Methods Four common machine learning algorithms, three data balancing techniques, and feature selection are used to build and validate predictive models for COVID-19 mechanical requirement and mortality. Baseline CXR, CBC, demographic, and clinical data were retrospectively collected from April 2, 2020, till June 18, 2020, for 5739 patients with confirmed PCR COVID-19 at King Abdulaziz Medical City in Riyadh. However, of those patients, only 1508 and 1513 have met the inclusion criteria for ventilatory support and mortalilty endpoints, respectively. Results In an independent test set, ventilation requirement predictive model with top 20 features selected with reliefF algorithm from baseline radiological, laboratory, and clinical data using support vector machines and random undersampling technique attained an AUC of 0.87 and a balanced accuracy of 0.81. For mortality endpoint, the top model yielded an AUC of 0.83 and a balanced accuracy of 0.80 using all features with balanced random forest. This indicates that with only routinely collected data our models can predict the outcome with good performance. The predictive ability of combined data consistently outperformed each data set individually for intubation and mortality. For the ventilator support, chest X-ray severity annotations alone performed better than comorbidity, complete blood count, age, or gender with an AUC of 0.85 and balanced accuracy of 0.79. For mortality, comorbidity alone achieved an AUC of 0.80 and a balanced accuracy of 0.72, which is higher than models that use either chest radiograph, laboratory, or demographic features only. Conclusion The experimental results demonstrate the practicality of the proposed COVID-19 predictive tool for hospital resource planning and patients’ prioritization in the current COVID-19 pandemic crisis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.