Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and con rmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 mbria ( mH), A-mbrial adhesion (afa), hemolysin (hly), mbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were mH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2.The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.
Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.
Background and Objectives: Uropathogenic Escherichia coli (UPEC) is divided into different phylogenetic groups that differ in their antibiotic resistance patterns, serogroups and pathogenicity. This study aimed to investigate the prevalence of phylogenetic groups of UPEC isolates and their relationship with serogroups and virulence factors in patients with UTIs. Materials and Methods: Of the 412 urine samples tested a total of 150 UPEC were isolated and confirmed with PCR using 16S rRNA gene. Antibiotic resistance of the isolates was tested using disk diffusion method and the isolates were divided into phylogenetic groups by the quadruplex PCR method. The prevalence of serogroups and virulence genes were investigated using multiplex PCR. Results: 87 (58%) of the isolates belonged to phylogroup B2. Virulence genes fimH (95.3%), aer (49.3%) and serogroups O8 (22.3%), O25 (21.5%) showed the highest prevalence. The lowest drug resistance was observed against imipenem (4.6%) and meropenem (3.3%). The prevalence of multidrug-resistant and extended-spectrum beta-lactamases isolates were 60% and 61.3%, respectively. We also found a significant relationship between phylogenetic groups, serogroups and virulence factors among our isolates. Conclusion: The high abundance of phylogenetic group B2, serogroups O8 and O25, and virulence genes fimH and aer indicate their importance in the pathogenesis of UPEC in this country.
Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 fimbria (fimH), A-fimbrial adhesion (afa), hemolysin (hly), fimbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.
Background: Antibiotic resistance emerged in the pathogens causing urinary tract infections (UTIs) and became widespread. Moreover, increasing drug resistance has highlighted the need to evaluate the antibiotic resistance pattern to improve experimental treatment. The purpose of this study was to evaluate the bacteria causing UTIs and their susceptibility patterns based on the geographical area. Methods: The present study was conducted on outpatients referred to Qal’at Saleh Hospital in Iraq from January 2018 to January 2019. The pathogenic bacteria were detected using API 20E kit. The antimicrobial susceptibility testing was conducted using the disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Results: Of 216 isolates, 87.9% contained gram-negative bacteria and 12.03% contained gram-positive bacteria. In this study, Escherichia coli was identified as the main cause of UTIs. Of all the isolates, 73.61% were resistant to three or more classes of antibiotics. The antibiotic susceptibility and resistance patterns of all isolates showed that amikacin and ciprofloxacin had the highest activity against gram-negative bacteria and vancomycin, amikacin, and levofloxacin had the highest activity against gram-positive bacteria. Conclusions: Due to the widespread resistance to drugs used in the treatment of UTIs, it is difficult to select the appropriate drugs for treating UTIs. UTI affects different age groups; therefore, sufficient knowledge should be transferred to the community to prevent these infections. If urine culture is unavailable, or it is impossible to wait for antibiotic susceptibility testing, Amikacin and Vancomycin might be the best candidates for UTI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.