A novel CPW Low pass filter structure using square complementary split ring resonator (CSRRs) is presented in this work. The CSRRs are etched periodically in each ground plane of the CPW line which permit to suppress the spurious response. The low pass filter shows a good rejection in the stop band. The cutoff frequency at-3dB is equal to fc = 5.28GHz. This filter has total area of 35.48x21.16 mm 2 .
<p>This paper presents a technique to determine the Dielectric constant and dielectric loss of the building dielectric materials using propagation constant measurements. The material sample is loaded in an X-band (8.5GHz-12.5GHz) rectangular waveguide and its two port S-parameters are measured as a function of frequency using a Vector Network Analyzer without TRL Calibration. The results obtained from samples of dielectric materials (Air, Cellular concrete and Wood) on the X-band frequencies show the validity of the proposed technique to determine the complex permittivity of the building dielectric materials on the X-band frequencies<em>.</em></p>
In this paper, we present a novel coplanar waveguide low pass filter (LPF) structure based on the use of square complementary split ring resonators (CSRRs) in order to enhance the performances of a low pass filter. Especially, to enlarge the bandwidth of the LPF, the insertion losses and to increase the rejection of the LPF. The CSRRs are optimised and inserted periodically along the center conductor of the CPW line with a CPW ground integrating stubs permitting to enlarge the bandwidth. The simulation results of this filter show a -3 dB cut-off frequency equal to fc = 5.28 GHz. The designed filter has a good rejection in the stop band which below -20 dB and presents a good insertion loss in the bandwidth. The proposed filter has been fabricated and tested which give a good agreement between simulation and measurement results, the whole dimensions of the validated filter are 35.48x21.16 mm 2 . The originality of this work is the wide rejection band and the miniature dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.