Textile industry is one of the most polluting industries in the world. It has a high importance in terms of its environment impact, since it consumes a considerably large amount of water and produces highly polluted discharge water. In this work, characterization of toxic organic compounds is proposed. Based on gas chromatography coupled to mass spectrometry (GC/MS) screening analysis, organic micropollutant diversity of textile effluents from a local textile processing factory was investigated. In the present work, physicochemical characterization of the studied textile effluents showed considerably high values of principal pollution parameters above the prescribed discharge water limits. Heavy metals like zinc (Zn), copper (Cu), iron (Fe), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) were found to be present within the permissible limits. The results of GC/MS revealed the presence of various organic compounds belonging to a wide range of chemical classes. Main groups of chemical compounds detected in these effluents were aromatic carboxylic acids, alkanes, aromatic amines, phthalates, aliphatic carboxylic acids, and linear aliphatic alcohols. The results of this study allowed significant contributions to the chemical characterization of textile industry contaminants and identification of indicators that can be considered an important tool for assessment of the potential impact of textile activities to the contamination of aquatic environment and health hazard.
An extensive survey conducted in the Saïss plain of Morocco during the 2017–2018 growing season revealed that 35 out of 50 apple and pear orchards were infested with a pathogen that causes the decline disease. Morphological and phylogenetic tree analyses using the cox II gene allowed us to identify the pathogen as Phytopythium vexans. Interestingly, no Phytophthora and Pythium species were isolated. The occurrence and prevalence of the disease varied between locations; the most infested locations were Meknes (100%), Imouzzer (83%), and Sefrou (80%). To fulfill Koch’s postulate, a greenhouse pathogenicity test was performed on the stem and collar of one-year-old healthy seedlings of apple rootstock M115. Symptoms similar to those observed in the field were reproduced in less than 4 months post-inoculation with root rot disease severity ranging from 70 to 100%. The survey results evidenced that apple rootstocks, soil type, and irrigation procedure may contribute significantly to the occurrence of the disease. The disease was most prevalent in drip water irrigation and sandy-clay soil on wild apple rootstock. Accordingly, a rational drip advanced watering system and good sanitation practices could eliminate water stagnation and help prevent the onset of this disease. It was concluded that Pp. vexans occurrence may be strongly influenced by irrigation mode and type of soil. Therefore, the obtained findings of this study could help to better understand the recurrence of this disease and to develop a reliable integrated strategy for its management.
The biomechanical root flexibility in response to hydromechanical soil heterogeneity is the most determining factor of the root architecture which plays a paramount role in mycorrhizal infection and allows the seedlings to adapt to the environmental constraint. We examined the impact of five different hydromechanical medium properties (hydroponics, vermiculite, vermiculite-gravel, sawdust, and sand) on the morphology, physiology, and anatomy of Cedrus atlantica seedlings at a controlled growth chamber. The growth of the seedling is strongly stimulated by the hydroponic medium through the stimulation of the aerial part dry weight and the main root length. However, the sand medium increases the main root dry weight by the radial expanse stimulation at the level of the epidermis, vascular cylinder, and cortex and compensates the less root architecture by the stimulation of the xylem and phloem areas. In contrast to sand and hydroponic media, the sawdust medium stimulates the phloem/xylem ratio, the root architecture, and the short roots. The Pearson bilateral correlation shows that the aerial part dry weight is positively correlated with the permeability, porosity, and water-holding capacity and negatively with the bulk density and density at saturation, whereas the short root production is negatively correlated with the permeability and water-holding capacity. Hence, the hydromechanical characteristics of the soils must be taken into account in the reforestation and mycorrhization attempts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.