We show that topology optimization (TO) of metallic resonators can lead to ∼ 10 2 × improvement in surfaceenhanced Raman scattering (SERS) efficiency compared to traditional resonant structures such as bowtie antennas. TO inverse design leads to surprising structures very different from conventional designs, which simultaneously optimize focusing of the incident wave and emission from the Raman dipole. We consider isolated metallic particles as well as more complicated configurations such as periodic surfaces or resonators coupled to dielectric waveguides, and the benefits of TO are even greater in the latter case. Our results are motivated by recent rigorous upper bounds to Raman scattering enhancement, and shed light on the extent to which these bounds are achievable. * Corresponding
The low efficiency of Raman spectroscopy can be overcome by placing the active molecules in the vicinity of scatterers, typically rough surfaces or nanostructures with various shapes. This surface-enhanced Raman scattering (SERS) leads to substantial enhancement that depends on the scatterer that is used. In this work, we find fundamental upper bounds on the Raman enhancement for arbitrary-shaped scatterers, depending only on its material constants and the separation distance from the molecule. According to our metric, silver is optimal in visible wavelengths while aluminum is better in the near-UV region. Our general analytical bound scales as the volume of the scatterer and the inverse sixth power of the distance to the active molecule. Numerical computations show that simple geometries fall short of the bounds, suggesting further design opportunities for future improvement. For periodic scatterers, we use two formulations to discover different bounds, and the tighter of the two always must apply. Comparing these bounds suggests an optimal period depending on the volume of the scatterer. arXiv:1909.00202v1 [physics.optics]
In this paper, we develop an approximate wide-bandwidth upper bound to the absorption enhancement in arrays of metaparticles, applicable to general wave-scattering problems and motivated here by ocean-buoy energy extraction. We show that general limits, including the well-known Yablonovitch result in solar cells, arise from reciprocity conditions. The use of reciprocity in the stochastic regime leads us to a corrected diffusion model from which we derive our main result: an analytical prediction of optimal array absorption that closely matches exact simulations for both random and optimized arrays under angle/frequency averaging. This result also enables us to propose and quantify approaches to increase performance through careful particle design and/or using external reflectors. We show in particular that the use of membranes on the water's surface allows substantial enhancement.
By computational optimization of air-void cavities in metallic substrates, we show that the local density of states (LDOS) can reach within a factor of ≈10 of recent theoretical upper limits and within a factor ≈4 for the single-polarization LDOS, demonstrating that the theoretical limits are nearly attainable. Optimizing the total LDOS results in a spontaneous symmetry breaking where it is preferable to couple to a specific polarization. Moreover, simple shapes such as optimized cylinders attain nearly the performance of complicated many-parameter optima, suggesting that only one or two key parameters matter in order to approach the theoretical LDOS bounds for metallic resonators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.