We describe a fully-vectorial, three-dimensional algorithm to compute the definite-frequency eigenstates of Maxwell's equations in arbitrary periodic dielectric structures, including systems with anisotropy (birefringence) or magnetic materials, using preconditioned block-iterative eigensolvers in a planewave basis. Favorable scaling with the system size and the number of computed bands is exhibited. We propose a new effective dielectric tensor for anisotropic structures, and demonstrate that O Delta x;2 convergence can be achieved even in systems with sharp material discontinuities. We show how it is possible to solve for interior eigenvalues, such as localized defect modes, without computing the many underlying eigenstates. Preconditioned conjugate-gradient Rayleigh-quotient minimization is compared with the Davidson method for eigensolution, and a number of iteration variants and preconditioners are characterized. Our implementation is freely available on the Web.
This paper describes Meep, a popular free implementation of the finite-difference time-domain (FDTD) method for simulating electromagnetism. In particular, we focus on aspects of implementing a full-featured FDTD package that go beyond standard textbook descriptions of the algorithm, or ways in which Meep differs from typical FDTD implementations. These include pervasive interpolation and accurate modeling of subpixel features, advanced signal processing, support for nonlinear materials via Padé approximants, and flexible scripting capabilities.
PACS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.