We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a protein differentially expressed in normal and neoplastic cells (DENN-SV) and human MADD (MAPK-activating death domain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor ␣ (TNF-␣)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor B. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-␣-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-␣-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-␣ through alternative splicing.
Dendritic cell (DC)-specific intercellular cell adhesion molecule-3 (ICAM-3)-grabbing non-integrin (DC-SIGN) is expressed on the surface of DCs and specialized macrophages and can support T cell proliferation. Antibody-mediated co-ligation of CD3 and ICAM-3, the ligand for both DC-SIGN and leukocyte function-associated antigen-1, leads to T cell activation. Therefore, we tested to see whether DC-SIGN or a splice variant of dendritic cell-specific intercellular cell adhesion molecule-3-grabbing non-integrin (sDC-SIGN) can co-stimulate primary human T cells. The sDC-SIGN lacking the transmembrane domain encoded by exon 3 localizes to the cytoplasm of cells and is not secreted. Both B7 and DC-SIGN co-stimulated phorbol myristate acetate-stimulated CD4+ cells as compared with controls. However, unlike B7, both DC-SIGN and sDC-SIGN failed to co-stimulate CD4+ T cells treated with sub-optimal amounts of anti-CD3 (2 microg ml(-1)) as defined by a lack of CD69 and CD25 up-regulation, cell division and cytokine secretion. Instead, DC-SIGN, and not sDC-SIGN, induced a small but consistent down-regulation of IL-2 production by these CD4+ T cells. In contrast, DC-SIGN in the presence of 30 mug ml(-1) of anti-CD3 modestly up-regulated cytokine production as compared with control. These results suggest that DC-SIGN can differentially modulate T cell stimulation.
Autoimmune Graves' disease (GD), which is characterized by hyperthyroidism, is mediated by autoantibodies to the thyrotropin receptor (TSHR). Yersinia enterocolitica (Y.e.) has been shown to produce a lipoprotein (LP) that can cross-react with the TSHR and thus can act as a potential trigger of thyroid autoimmunity. In this study, to further characterize LP, we cloned the LP gene from Y. enterocolitica and expressed a recombinant LP. This recombinant LP was mitogenic for C3H/HeJ (LPS hyporesponsive) B cells and induced production and secretion of significant levels of IL-6 from splenocytes. A mouse antibody generated against the recombinant LP cross-reacted with TSHR as shown by western blot analysis. FACS analysis of splenocytes from mice immunized with LP revealed that LP could induce increased expression of B7.1 and B7.2. The immunomodulatory effects of LP including up-regulation of B7.1 and B7.2 coupled with its ability to induce antibodies that can cross-react with the TSHR showed several potential mechanisms by which it can cause breakdown of self-tolerance to TSHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.