CDC6 is essential for S-phase to initiate DNA replication. It also regulates M-phase exit by inhibiting the activity of the major M-phase protein kinase CDK1. Here we show that addition of recombinant CDC6 to Xenopus embryo cycling extract delays the M-phase entry and inhibits CDK1 during the whole M-phase. Down regulation of endogenous CDC6 accelerates the M-phase entry, abolishes the initial slow and progressive phase of histone H1 kinase activation and increases the level of CDK1 activity during the M-phase. All these effects are fully rescued by the addition of recombinant CDC6 to the extracts. Diminution of CDC6 level in mouse zygotes by two different methods results in accelerated entry into the first cell division showing physiological relevance of CDC6 in intact cells. Thus, CDC6 behaves as CDK1 inhibitor regulating not only the M-phase exit, but also the M-phase entry and progression via limiting the level of CDK1 activity. We propose a novel mechanism of M-phase entry controlled by CDC6 and counterbalancing cyclin B-mediated CDK1 activation. Thus, CDK1 activation proceeds with concomitant inhibition by CDC6, which tunes the timing of the M-phase entry during the embryonic cell cycle.
The timing of the M-phase is precisely controlled by a CDC6-dependent mechanism inhibiting the mitotic histone H1 kinase. Here, we describe the differential regulation of the dynamics of this mitotic kinase activity by exogenous cyclin A or cyclin B in the Xenopus laevis cycling extracts. We show that the experimental increase in cyclin A modifies only the level of histone H1 kinase activity, while the cyclin B increase modifies two parameters: histone H1 kinase activity and the timing of its full activation, which is accelerated. On the other hand, the cyclin A depletion significantly delays full activation of histone H1 kinase. However, when CDC6 is added to such an extract, it inhibits cyclin B-associated histone H1 kinase, but does not modify the mitotic timing in the absence of cyclin A. Further, we show via p9 co-precipitation with Cyclin-Dependent Kinases (CDKs), that both CDC6 and the bona fide CDK1 inhibitor Xic1 associate with the mitotic CDKs. Finally, we show that the Xic1 temporarily separates from the mitotic CDKs complexes during the peak of histone H1 kinase activity. These data show the differential coordination of the M-phase progression by cyclin A- and cyclin B-dependent CDKs, confirm the critical role of the CDC6-dependent histone H1 kinase inhibition in this process, and show that CDC6 acts differentially through the cyclin B- and cyclin A-associated CDKs. This CDC6- and cyclins-dependent mechanism likely depends on the precisely regulated association of Xic1 with the mitotic CDKs complexes. We postulate that: i. the dissociation of Xic1 from the CDKs complexes allows the maximal activation of CDK1 during the M-phase, ii. the switch between cyclin A- and cyclin B-CDK inhibition upon M-phase initiation may be responsible for the diauxic growth of mitotic histone H1 kinase activity.
International audienceDuring the cell cycle, cyclin dependent kinase 1 (CDK1) and protein phosphatase 2A (PP2A) play major roles in the regulation of mitosis. CDK1 phosphorylates a series of substrates triggering M-phase entry. Most of these substrates are dephosphorylated by PP2A. To allow phosphorylation of CDK1 substrates, PP2A is progressively inactivated upon M-phase entry. We have shown previously that the interplay between these two activities determines the timing of M-phase entry. Slight diminution of CDK1 activity by the RO3306 inhibitor delays M-phase entry in a dose-dependent manner in Xenopus embryo cell-free extract, while reduction of PP2A activity by OA inhibitor accelerates this process also in a dose-dependent manner. However, when a mixture of RO3306 and OA is added to the extract, an intermediate timing of M-phase entry is observed. Here we use a mathematical model to describe and understand this interplay. Simulations showing acceleration and delay in M-phase entry match previously described experimental data. CDC25 phosphatase is a major activator of CDK1 and acts through CDK1 Tyr15 and Thr14 dephosphorylation. Addition of CDC25 activity to our mathematical model was also consistent with our experimental results. To verify whether our assumption that the dynamics of CDC25 activation used in this model are the same in all experimental variants, we analyzed the dynamics of CDC25 phosphorylation, which reflect its activation. We confirm that these dynamics are indeed very similar in control extracts and when RO3306 and OA are present separately. However, when RO3306 and OA are added simultaneously to the extract, activation of CDC25 is slightly delayed. Integration of this parameter allowed us to improve our model. Furthermore, the pattern of CDK1 dephosphorylation on Tyr15 showed that the real dynamics of CDK1 activation are very similar in all experimental variants. The model presented here accurately describes, in mathematical terms, how the interplay between CDK1, PP2A and CDC25 controls the flexible timing of M-phase entry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.