The rapid growth in renewable energy-based distributed generation has raised serious concerns about the grid’s stability. Due to the intrinsic rotor inertia and damping feature and the voltage (reactive power) control ability, traditional bulk power plants, which are dominated by synchronous generators (SG), can readily sustain system instability. However, converter-based renewable energy sources possess unique properties, such as stochastic real and reactive power output response, low output impedance, and little or no inertia and damping properties, leading to frequency and voltage disturbance in the grid. To overcome these issues, the concept of virtual synchronous generators (VSG) is introduced, which aims to replicate some of the characteristics of the traditional synchronous generators using a converter control technique to supply more inertia virtually. This paper reviews the fundamentals, different topologies, and a detailed VSG structure. Moreover, a VSG-based frequency control scheme is emphasized, and the paper focuses on the different topologies of VSGs in the microgrid frequency regulation task. Then, the characteristics of the control systems and applications of the virtual synchronous generators are described. Finally, the relevant critical issues and technical research challenges are presented, and future trends related to this subject are highlighted.
The heterogeneous and interoperable nature of the cyber-physical system (CPS) has enabled the smart grid (SG) to operate near the stability limits with an inconsiderable accuracy margin. This has imposed the need for more intelligent, predictive, fast, and accurate algorithms that are able to operate the grid autonomously to avoid cascading failures and/or blackouts. In this paper, a new comprehensive identification system is proposed that employs various machine learning architectures for classifying stability records in smart grid networks. Specifically, seven machine learning architectures are investigated, including optimizable support vector machine (SVM), decision trees classifier (DTC), logistic regression classifier (LRC), naïve Bayes classifier (NBC), linear discriminant classifier (LDC), k-nearest neighbor (kNN), and ensemble boosted classifier (EBC). The developed models are evaluated and contrasted in terms of various performance evaluation metrics such as accuracy, precision, recall, harmonic mean, prediction overhead, and others. Moreover, the system performance was evaluated on a recent and significant dataset for smart grid network stability (SGN_Stab2018), scoring a high identification accuracy (99.90%) with low identification overhead (4.17 μSec) for the optimizable SVM architecture. We also provide an in-depth description of our implementation in conjunction with an extensive experimental evaluation as well as a comparison with state-of-the-art models. The comparison outcomes obtained indicate that the optimized model provides a compact and efficient model that can successfully and accurately predict the voltage stability margin (VSM) considering different operating conditions, employing the fewest possible input features. Eventually, the results revealed the competency and superiority of the proposed optimized model over the other available models. The technique also speeds up the training process by reducing the number of simulations on a detailed power system model around operating points where correct predictions are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.