Simulating the phase behavior of a reservoir fluid requires the determination of many parameters, such as gas–oil ratio and formation volume factor. The determination of such parameters requires knowledge of the critical properties and compressibility factor (Z factor). There are many techniques to determine the compressibility factor, such as experimental pressure, volume, and temperature (PVT) tests, empirical correlations, and artificial intelligence approaches. In this work, two different models based on statistical regression and multi-layer-feedforward neural network (MLFN) were developed to predict the Z factor of natural gas by utilizing the experimental data of 1079 samples with a wide range of pseudo-reduced pressure (0.12–25.8) and pseudo reduced temperature (1.3–2.4). The statistical regression model was proposed and trained in R using the “rjags” package and Markov chain Monte Carlo simulation, while the multi-layer-feedforward neural network model was postulated and trained using the “neural net” package. The neural network consists of one input layer with two anodes, three hidden layers, and one output layer. The input parameters are the ratio of pseudo-reduced pressure and the pseudo-reduced temperature of the natural hydrocarbon gas, while the output is the Z factor. The proposed statistical and MLFN models showed a positive correlation between the actual and predicted values of the Z factor, with a correlation coefficient of 0.967 and 0.979, respectively. The results from the present study show that the MLFN can lead to accurate and reliable prediction of the natural gas compressibility factor.
Seismic data are considered crucial sources of data that help identify the litho-fluid facies distributions in reservoir rocks. However, different facies mostly have similar responses to seismic attributes. In addition, seismic anisotropy negatively affects the facies predictors extracted from seismic data. Accordingly, this study aims at estimating zero-offset acoustic and shear impedances based on partial-stack inversion by two methods: statistical modeling and a multilayer feed-forward neural network (MLFN). The resulting impedance volumes are compared to those obtained from isotropic simultaneous inversion by using impedance logs. The best impedance volumes are applied to Thomsen’s anisotropy equations to solve for the anisotropy parameters Epsilon and Delta. Finally, the shear and acoustic impedances are transformed into elastic properties from which the facies and fluid distributions are predicted by using the logistic regression and decision tree algorithms. The results obtained from the MLFN show better matching with the impedance and facies logs compared to those obtained from isotropic inversion and statistical modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.