Fractured imaging is an important target for oil and gas exploration, as these images are heterogeneous and have contain low-impedance contrast, which indicate the complexity in a geological structure. These small-scale discontinuities, such as fractures and faults, present themselves in seismic data in the form of diffracted waves. Generally, seismic data contain both reflected and diffracted events because of the physical phenomena in the subsurface and due to the recording system. Seismic diffractions are produced once the acoustic impedance contrast appears, including faults, fractures, channels, rough edges of structures, and karst sections. In this study, a double square root (DSR) equation is used for modeling of the diffraction hyperbola with different velocities and depths of point diffraction to elaborate the diffraction hyperbolic pattern. Further, we study the diffraction separation methods and the effects of the velocity analysis methods (semblance vs. hybrid travel time) for velocity model building for imaging. As a proof of concept, we apply our research work on a steep dipping fault model, which demonstrates the possibility of separating seismic diffractions using dip frequency filtering (DFF) in the frequency–wavenumber (F-K) domain. The imaging is performed using two different velocity models, namely the semblance and hybrid travel time (HTT) analysis methods. The HTT method provides the optimum results for imaging of complex structures and imaging below shadow zones.
A majority of remaining proven Oil & Gas reserves is contained by Carbonate reservoir, and much more complicated to explore as imaging of the Carbonate rocks is poor. In case of Carbonate data, seismic diffraction imaging has contributed to an enhancement in the quality of seismic but there is still lack of understanding the lithology and impedance contrast which can be defined by the seismic inversion. In contrast, to the conventional process, an integration of seismic inversion methods are necessary to understand the lithology and include the full band of frequency in our initial model to incorporate and detail study about the basin for prospect evaluation. In this paper, an integrated approch is developed for better deleniation of subsurface structure and lithologies. Seismic post stack inversion technique is applied to the Carbonate field to study Electroficies and lithofacies of subsurface strata for better and detail study of the reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.