The large or small scale of a landslide is a natural, widespread process, resulting from the downward and outward movement of slope-forming materials, such as sculpting the landscape. Characterized landslide material and properties’ inhomogeneities conditions become a challenge as the process required the availability of a wide range of data, observations, and measurements with an evaluation of geological and hydrological conditions. Detailed investigations represent an essential component of the landslide risk mitigation process, relying on subsurface investigations, discrete subsurface sampling, and laboratory tests. To extend this approach, seismic refraction and two-dimensional (2-D) resistivity were utilized to study the landslides activities in Ulu Yam. The cross-plot analysis was introduced to integrate the geophysical results based on the criteria of the model. Velocity distributions from seismic refraction revealed the stiffness of the soil, where weak zones identified with values of Vp ≤ 1200 m/s, defined as threshold frequency for failure to occur. The 2-D resistivity shows that the weak zones were identified with resistivity values of <1200 Ωm. The 2-D cross-plot model gives a comprehensive interpretation where a low velocity and resistivity value represents the failure plane of materials to failure. The volume of mass sliding was calculated based on retrieved information from the model.
Fractured imaging is an important target for oil and gas exploration, as these images are heterogeneous and have contain low-impedance contrast, which indicate the complexity in a geological structure. These small-scale discontinuities, such as fractures and faults, present themselves in seismic data in the form of diffracted waves. Generally, seismic data contain both reflected and diffracted events because of the physical phenomena in the subsurface and due to the recording system. Seismic diffractions are produced once the acoustic impedance contrast appears, including faults, fractures, channels, rough edges of structures, and karst sections. In this study, a double square root (DSR) equation is used for modeling of the diffraction hyperbola with different velocities and depths of point diffraction to elaborate the diffraction hyperbolic pattern. Further, we study the diffraction separation methods and the effects of the velocity analysis methods (semblance vs. hybrid travel time) for velocity model building for imaging. As a proof of concept, we apply our research work on a steep dipping fault model, which demonstrates the possibility of separating seismic diffractions using dip frequency filtering (DFF) in the frequency–wavenumber (F-K) domain. The imaging is performed using two different velocity models, namely the semblance and hybrid travel time (HTT) analysis methods. The HTT method provides the optimum results for imaging of complex structures and imaging below shadow zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.