Recently, unmanned aerial vehicles (UAVs) or drones have emerged as a ubiquitous and integral part of our society. They appear in great diversity in a multiplicity of applications for economic, commercial, leisure, military and academic purposes. The drone industry has seen a sharp uptake in the last decade as a model to manufacture and deliver convergence, offering synergy by incorporating multiple technologies. It is due to technological trends and rapid advancements in control, miniaturization, and computerization, which culminate in secure, lightweight, robust, more-accessible and cost-efficient UAVs. UAVs support implicit particularities including access to disaster-stricken zones, swift mobility, airborne missions and payload features. Despite these appealing benefits, UAVs face limitations in operability due to several critical concerns in terms of flight autonomy, path planning, battery endurance, flight time and limited payload carrying capability, as intuitively it is not recommended to load heavy objects such as batteries. As a result, the primary goal of this research is to provide insights into the potentials of UAVs, as well as their characteristics and functionality issues. This study provides a comprehensive review of UAVs, types, swarms, classifications, charging methods and regulations. Moreover, application scenarios, potential challenges and security issues are also examined. Finally, future research directions are identified to further hone the research work. We believe these insights will serve as guidelines and motivations for relevant researchers.