While many patients infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) eventually produce neutralising antibodies, the degree of susceptibility of previously infected individuals to reinfection by SARS-CoV-2 is currently unknown. To better understand the impact of the immunoglobulin (IgG) level on reinfection in recovered coronavirus disease 2019 (COVID-19) patients, anti-nucleocapsid IgG levels against SARS-CoV-2 were measured in 829 patients with previously confirmed infection just after their recovery. Notably, 87 of these patients had no detectable IgG concentration. While there was just one case of asymptomatic reinfection 4.5 months after the initial recovery amongst patients with detectable anti-nucleocapsid IgG levels, 25 of the 87 patients negative for anti-nucleocapsid IgG were reinfected within one to three months after their first infection. Therefore, patients who recover from COVID-19 with no detectable anti-nucleocapsid IgG concentration appear to remain more susceptible to reinfection by SARS-CoV-2, with no apparent immunity. Also, although our results suggest the chance is lower, the possibility for recovered patients with positive anti-nucleocapsid IgG findings to be reinfected similarly exists.
Background: Abnormal inflammation coagulation biomarker levels of troponin, C-reactive protein (CRP), and D-dimer levels in serum have been demonstrated to be associated and involved in the disease progression of coronavirus disease 2019 .Methods: First: the study aimed to investigate the correlation of troponin, CRP, D-dimer, white blood cell (WBC) and polymerase chain reaction-cycle threshold (PCR-Ct) within COVID-19 survivors (143 patients; 79 males, 64 females) and in deceased (30 patients; 12 males, 18 females) group. Also, assessing any differences between both groups in studied parameters. Second: a correlation study of studied parameters' level has been conducted within families (41 patients; 23 males [seven deaths] and 18 females [eight deaths]) that lost more than one member due to the severity of the disease. Also, differences between these family and control group (132 patients; 69 males and 63 females) group in studied parameters have been assessed. Results: In the first week of hospitalization, there were significant differences in D-dimer, CRP and troponin level between survived and deceased patient groups. In the second week of the admission, both groups had significant differences in the level of all studied parameters; troponin I, D-dimer, CRP, and WBCs. WBC levels positively correlated to CRP in male survivors (r = 0.75, p < 0.0001), and to troponin in deceased male patients (r = 0.74, p = 0.007). The second week of patient admission was critical in the group of families who lost more than one person, when troponin was correlated positively with D-dimer, CRP, and WBCs. Conclusion:Troponin, D-dimer, CRP, and WBCs level were significantly higher in COVID-19 patients who died than in COVID-19 survivors. High troponin and WBC levels, were considerably associated with families that lost more than one member, when compared with the unrelated COVID-19 patient control.
While many patients infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) eventually produce neutralising antibodies, the degree of susceptibility of previously infected individuals to reinfection by SARS-CoV-2 is currently unknown. To better understand the impact of the immunoglobulin (IgG) level on reinfection in recovered coronavirus disease 2019 (COVID-19) patients, IgG levels against SARS-CoV-2 were measured in 829 patients with previously confirmed infection just after their recovery. Notably, 87 of these patients had no detectable IgG concentration. While there was just one case of asymptomatic reinfection 4.5 months after the initial recovery amongst patients with detectable IgG levels, 25 of the 87 patients negative for IgG were reinfected within one to three months after their first infection. Therefore, patients who recover from COVID-19 with no detectable IgG concentration appear to remain more susceptible to reinfection by SARS-CoV-2, with no apparent immunity. Also, although our results suggest the chance is lower, the possibility for recovered patients with positive IgG findings to be reinfected similarly exists.
Nosocomial infections occur worldwide and also in the Kurdistan region. Frequently patients colonized with multiresistant Pseudomonas aeruginosa isolates are encountered in many hospitals. As information is lacking with respect to the mechanisms of resistance responsible for the multiresistant character of the P. aeruginosa isolates and their genetic relationship, isolates were prospectively collected and characterized with respect to their mechanism of resistance. During 2012 and 2013, 81 P. aeruginosa isolates were collected from three teaching hospitals in the city of Erbil, Iraq. Susceptibility testing was performed using the VITEK-2 system. Isolates were screened for the presence of extended-spectrum β-lactamases (ESBLs) and for the presence of metallo β-lactamases (MBLs). The presence of serine carbapenemases was detected by PCR. The genetic relationship of the isolates was demonstrated by amplified fragment length polymorphism (AFLP). Susceptibility results revealed high rates of resistance against all classes of antibiotics except polymyxins. Genetic characterization demonstrated the presence of ESBL-genes, that is, bla (30%) and bla (17%), also ESBL bla was detected in four isolates. AFLP typing revealed clonal spread of bla, bla, and three clusters of bla-positive isolates. Only one isolate was MBL (bla) positive. Of a selected number of isolates (n = 11), whole-genome sequencing analysis revealed that these isolates belonged to "high-risk" MLSTs ST244, ST235, ST308, and ST654. This study reveals the presence and clonal spread of widely resistant high-risk clones of P. aeruginosa in Iraqi Kurdistan. As far as we are aware, this is the first report of multiple, polyclonal, PME producing P. aeruginosa outside the Arabian Peninsula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.