Deep investigation boreholes in crystalline rock for site selection of repositories for high-level radioactive waste are proposed to be sealed by installing a series of dense concrete and clay plugs. These should prevent radionuclides from leaking canisters at depth to migrate to the biosphere through the holes. The concrete seals will be installed where the holes intersect water-bearing fracture zones to serve as stable and low-permeable supports for adjacent clay plugs. Low porosity and microstructural stability must be guaranteed for many thousands of years and ordinary Portland cement with organic superplastizer will not fulfill the requirements since the high pH will cause degradation of contacting clay and the organic additive can produce colloids with a capacity to carry radionuclides up to the biosphere. Very cement-poor concrete (<8%) based on low-pH cement and with talc as plasticizer is an option but it matures more slowly, which requires that the construction of seals is made so that sufficient bearing capacity for carrying overlying clay seals is reached.
Multibarrier concepts are commonly proposed for effective isolation of highly radioactive waste (HLW). Present concepts consider the host rock as a barrier by retarding migration of possibly released radionuclides to the biosphere, containers for preventing release of radionuclides, and "buffer clay" embedding the canisters for providing ductility and minimizing the risk of container breakage and for delaying migration of possibly escaping radionuclides. Closer analysis of the isolating functions shows that rock will only serve as a mechanical protection of the "nearfield", the containers of proposed types can be short-lived, and the surrounding clay will be increasingly permeable and stiffen hence becoming less ductile with time. A different approach, representing an alternative to the common concepts, can be safer and cheaper. It takes the HIPOW copper canister as the only major barrier and a cheap but sufficiently efficient buffer as embedment. The repository can consist of an abandoned copper mine, an option being to place HLW in emptied drifts while mining is still going in not yet exploited parts of the ore body.
The rheological properties of cement-based grouts containing talc or palygorskite were investigated for optimizing fluidity and quick strengthening at injection. The fluidity controls the ability of grout to penetrate fractures and can be determined by pipe flow tests, Marsh funnel tests, mini-slump cone tests and rheometer tests. The grouts were 1) Talc for fluidity and strength by reacting with cement, 2) Palygorskite (attapulgite) for early gelation by being thixotropic, and 3) Powdered quartz for chemical integrity. The freshly prepared grouts behaved as Bingham fluids with viscosities from 0.151 to 0.464 Pas and yield stresses 5.2 Pa to 36.7 Pa. Statistical analysis of the flow test data converted Marsh flow time into viscosity. The pipe flow tests gave 26.5% higher values than the viscometer for grout with Portland cement and talc, and about 13.7% lower than the viscometer data for the grout with low-pH cement and talc. The big Marsh funnel gave values differing by 5.2%-5.3% from those of the viscometer for grout with talc and Portland, and Merit 5000 cements. For grout with palygorskite the viscosity was at least twice that of the other grouts. Grout fluidity was positively affected by talc and negatively by palygorskite and early cement hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.