BackgroundTesting by pharmacogenomics (PGx) aims to reduce the side-effects of medicines and to optimize therapy.AimTo ascertain the knowledge and attitudes towards PGx among pharmacy students in Jordan and West Bank of Palestine (WBP).MethodsThis cross-sectional study focused on pharmacy students from five universities in Jordan and WBP. Students were asked to answer an online survey comprising 30-closed ended questions measuring the knowledge and attitudes towards PGx.ResultsThe total number of respondents to the questionnaire was 466. Most (96.1%) respondents knew that genetic variations can affect the drug response. Most students stated that the total number of lectures mentioning PGx was fewer than three. Most (>80%) respondents answered that they knew that human genetics can affect the response, inter-individual variation, and ethnic variations in the drug response. However, their knowledge about US Food and Drug Administration recommendations regarding PGx testing of commonly used drugs was weak. Also, 60.3% of respondents stated that the information they received about PGx was insufficient. Most (>92.7%) students wished to know more about PGx and believed that PGx is helpful in choosing the appropriate drug.ConclusionPharmacy students had fair knowledge and good attitudes towards PGx. These factors could aid application of PGx in clinical practice in Jordan and WBP.
Despite having the second highest mortality associated with cancer, currently Sorafenib is the only FDA-approved chemotherapeutic agent available for liver cancer patients which can only improve survival for few months. In this study, various pyrazolic chalcone analogous compounds were synthesized and evaluated as potential chemotherapeutic agents for the treatment of hepatocellular carcinoma (HCC). Modifying the central pyrazole ring at the C(3)-position with different heteroaryl rings and substituting the C(4)-position of pyrazole with differently substituted chalcone moiety produced fouthy two variant compounds. For all these compounds, cytotoxicity was evaluated using sulforhodamine B assay and real time cell growth tracking, respectively. Based on 50% inhibitory concentration (IC) values, compounds 39, 42, 49, and 52 were shown to exhibit potent cytotoxic activity against all the cancer cell lines tested, and had better cytotoxic activities than the well-known chemotherapeutic drug 5-FU. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Flow cytometric analysis of HCC cells treated with compounds 39, 42, 49, and 52 demonstrated that these compounds caused cell cycle arrest at G2/M phase followed by the apoptotic cell death and impaired cell growth as shown by real-time cell growth surveillance. Consistent with these results, western blotting of HCC cells treated with the compounds resulted in molecular changes for cell cycle proteins, where p21 levels were increased independent of p53 and the levels of the key initiators of mitosis Cyclin B1 and CDK1 were shown to decrease upon treatment. In conclusion, chalcone derivatives 42 and 52 show potent bioactivities by modulating the expression of cell-cycle related proteins and resulting in cell-cycle arrest in the HCC cell lines tested here, indicating that the compounds can be considered as preclinical candidates.
Background Safrole is a natural compound extracted from various plants, and has shown various biological activities. The current study aimed to investigate the antioxidant, antidiabetic, antimicrobial, and anticancer activity of safrole oil and to study the influence of safrole nanoemulgel on these activities. Methods The antioxidant and antidiabetic in-vitro assays were conducted using standard biomedical methods. The safrole oil nanoemulgel was developed using a self-emulsifying technique. Then the antimicrobial activity of the safrole oil and safrole nanoemulgel were performed on different microbial species, and cytotoxicity was determined against Hep3B cancer cell lines using the MTS assay. Results Safrole oil showed moderate antioxidant activity compared with standard Trolox, with IC50 value 50.28 ± 0.44 and 1.55 ± 0.32 μg/ml, respectively. Moreover, it had potent α-amylase inhibitory activity (IC50 11.36 ± 0.67 μg/ml) compared with Acarbose (IC50 value 5.88 ± 0.63). The safrole nanoemulgel had pseudo-plastic behaviour, droplet sizes below 200 nm, a polydispersity index (PDI) below 0.3, and a zeta potential of less than − 30 mV. Safrole oil has potential antimicrobial and anticancer activities, and these activities were improved with safrole nanoemulgel. Conclusion The safrole oil may be applied for the prevention and treatment of oxidative stress, diabetes, different microbial species and cancer, and these activities could be improved by nano-carriers.
Lavandula dentata L. and Origanum syriacum L. essential oils have numerous health benefits and properties, such as possessing common components with a variant degree of depressive actions in the central nervous system. We investigated the depressive property of these oils on AMPA receptors, which are responsible for most of the fast-excitatory neurotransmission in the CNS and play a critical role in synaptic plasticity. Since excessive activation of AMPARs has been linked to neurotoxicity leading to various pathologies, we hypothesize that these oils have a neuroprotective role by acting directly on the kinetics of AMPARs. Using Gas Chromatography-Mass Spectrometry (GC/MS) and patch-clamp electrophysiology, the essential oils of L. dentata flowers and O. syriacum leaves were characterized and the whole cell currents were measured with and without the administration of the oils onto HEK293 cells. The current study results showed that the biophysical properties of AMPA receptor subunits showed a decrease in desensitization rate of GluA1 and GluA2 homomers, using O. syriacum, while administering L. dentata oil decreased the desensitization rate of GluA1 and GluA2 homomers, as well as GluA1/2 heteromers. As for the deactivation rate, both oils slowed the deactivation kinetics of all AMPA receptor subunits. Intriguingly, between the two oils, the effect of desensitization and deactivation was of a greater significance for L. dentata oil than O. syriacum. Our data suggest that the two oils contain components that are essential to identify, as those active components underlie the oils’ neuronal depressive properties reported, and to extract them to synthesize a potent neuroprotective drug to treat neurological diseases potentially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.