BackgroundTesting by pharmacogenomics (PGx) aims to reduce the side-effects of medicines and to optimize therapy.AimTo ascertain the knowledge and attitudes towards PGx among pharmacy students in Jordan and West Bank of Palestine (WBP).MethodsThis cross-sectional study focused on pharmacy students from five universities in Jordan and WBP. Students were asked to answer an online survey comprising 30-closed ended questions measuring the knowledge and attitudes towards PGx.ResultsThe total number of respondents to the questionnaire was 466. Most (96.1%) respondents knew that genetic variations can affect the drug response. Most students stated that the total number of lectures mentioning PGx was fewer than three. Most (>80%) respondents answered that they knew that human genetics can affect the response, inter-individual variation, and ethnic variations in the drug response. However, their knowledge about US Food and Drug Administration recommendations regarding PGx testing of commonly used drugs was weak. Also, 60.3% of respondents stated that the information they received about PGx was insufficient. Most (>92.7%) students wished to know more about PGx and believed that PGx is helpful in choosing the appropriate drug.ConclusionPharmacy students had fair knowledge and good attitudes towards PGx. These factors could aid application of PGx in clinical practice in Jordan and WBP.
Enzymes in the cytochrome P450 4 (CYP4) family are involved in the metabolism of fatty acids, xenobiotics, therapeutic drugs, and signaling molecules, including eicosanoids, leukotrienes, and prostanoids. As CYP4 enzymes play a role in the maintenance of fatty acids and fatty-acid-derived bioactive molecules within a normal range, they have been implicated in various biological functions, including inflammation, skin barrier, eye function, cardiovascular health, and cancer. Numerous studies have indicated that genetic variants of CYP4 genes cause inter-individual variations in metabolism and disease susceptibility. Genetic variants of CYP4A11, 4F2 genes are associated with cardiovascular diseases. Mutations of CYP4B1, CYP4Z1, and other CYP4 genes that generate 20-HETE are a potential risk for cancer. CYP4V2 gene variants are associated with ocular disease, while those of CYP4F22 are linked to skin disease and CYP4F3B is associated with the inflammatory response. The present study comprehensively collected research to provide an updated view of the molecular functionality of CYP4 genes and their associations with human diseases. Functional analysis of CYP4 genes with clinical implications is necessary to understand inter-individual variations in disease susceptibility and for the development of alternative treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.