Accurate modeling of optical spectra requires careful treatment of the molecular structures and vibronic, environmental, and thermal contributions. The accuracy of the computational methods used to simulate absorption spectra is limited by their ability to account for all the factors that affect the spectral shapes and energetics. The ensemble-based approaches are widely used to model the absorption spectra of molecules in the condensed-phase, and their performance is system dependent. The Franck–Condon approach is suitable for simulating high resolution spectra of rigid systems, and its accuracy is limited mainly by the harmonic approximation. In this work, the absorption spectrum of the widely used cyanine Cy3 is simulated using the ensemble approach via classical and quantum sampling, as well as, the Franck–Condon approach. The factors limiting the ensemble approaches, including the sampling and force field effects, are tested, while the vertical and adiabatic harmonic approximations of the Franck–Condon approach are also systematically examined. Our results show that all the vertical methods, including the ensemble approach, are not suitable to model the absorption spectrum of Cy3, and recommend the adiabatic methods as suitable approaches for the modeling of spectra with strong vibronic contributions. We find that the thermal effects, the low frequency modes, and the simultaneous vibrational excitations have prominent contributions to the Cy3 spectrum. The inclusion of the solvent stabilizes the energetics significantly, while its negligible effect on the spectral shapes aligns well with the experimental observations.
Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.
Chronic hepatitis is major health problem that affect liver function with high morbidity and mortality in developing countries. Macerated liquorice root used since several decades as one of traditional drink in Egypt. We aimed in this study to evaluate the hepatoprotective effect of liquorice extract versus silymarin in chronic hepatitis rat model and explain the possible mechanism of hepatoprotection in such disease. To achieve our aim fifty male albino rats were used and divided into 5 equal groups, control group, chronic hepatitis group, chronic hepatitis group protected with liquorice extract, chronic hepatitis group protected with silymarin, normal group administrated liquorice extract. The results of the study exhibits the hepatoprotective effects of liquorice extract against chronic hepatitis as well as silymarin through there antiinflammatory and antioxidants mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.