Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity of amyloid-β peptides in Alzheimer’s disease. To gain a detailed understanding of the mutual interference of amyloid-β oligomers and the neuronal membrane, we carried out microseconds of all-atom molecular dynamics (MD) simulations on the dimerization of amyloid-β (Aβ)42 in the aqueous phase and in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The dimerization in solution is characterized by a random coil to β-sheet transition that seems on pathway to amyloid aggregation, while the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. As the neurotoxic activity of amyloid oligomers increases with oligomer order, these results suggest that GM1 is neuroprotective against Aβ-mediated toxicity.
The convergence of MD simulations is tested using varying measures for the intrinsically disordered amyloid-β peptide (Aβ). Markov state models show that 20–30 μs of MD is needed to reliably reproduce the thermodynamics and kinetics of Aβ.
Phosphorylation of tyrosine 32 in K-Ras has been shown to influence function by disrupting the GTPase cycle. To shed light on the underlying mechanism and atomic basis of this process, we carried out a comparative investigation of the oncogenic G12D K-Ras mutant and its phosphorylated variant (pTyr32) using all-atom molecular dynamics simulations and Markov state models. We show that, despite sharing a number of common features, G12D and pTyr32-G12D K-Ras exhibit some distinct conformational states and fluctuations. In addition to notable differences in conformation and dynamics of residues surrounding the GTP binding site, nonlocal changes were observed at a number of loops. Switch I is more flexible in pTyr32-G12D K-Ras while switch II is more flexible in G12D K-Ras. We also used time-lagged independent component analysis and k-means clustering to identify five metastable states for each system. We utilized transition path theory to calculate the transition probabilities for each state to build a Markov state model for each system. These models and other close inspections suggest that the phosphorylation of Tyr32 strongly affects protein dynamics and the active site conformation, especially with regards to the canonical switch conformations and dynamics.
The aggregation of amyloid β-peptides into neurotoxic oligomers is a key feature in the development of Alzheimer's disease. Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity. To gain a detailed understanding of the mutual effects of amyloid-β oligomers and the neuronal membrane, we carried out a total of 12 μs all-atom molecular dynamics (MD) simulations of the dimerization of the full-length Aβ42 peptide in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The conformational changes of Aβ42 resulting from its dimerization and interactions with the neuronal membrane are compared to those occurring upon its dimerization in the aqueous phase, which is also tested by 12 μs of MD simulations. We find that the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. Aβ42 dimerization in solution, on the other hand, is characterized by a random coil to β-sheet transition that seems to be on-pathway to amyloid aggregation. As the neurotoxic activity of amyloid oligomers increases with oligomer order, the results suggest that GM1 is neuroprotective against Aβ-mediated toxicity by inhibiting the formation of ordered amyloid oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.