Phytophthora alni is a highly destructive host specific pathogen to alders (Alnus spp.) spreading all over Europe. Recently this pathogen has been reported to cause diseases in common alder (Alnus glutinosa) in Spain. Seeds and seedlings of A. glutinosa were tested in vitro for their susceptibility to alder Phytophthora and other Phytophthora species. Isolates of P. alni ssp. alni, P. cinnamomi, P. citrophthora, P. nicotianae and P. palmivora were used in the experiments. Seeds and seedlings were inoculated with a zoospore suspension and uniform mycelial blocks of agar of the Phytophthora species. Susceptibility was calculated in terms of pathogen virulence on seed germination and seedling mortality 42 and 67 days after inoculation respectively. Seed germination and seedling mortality rates varied differently among the isolates used. Results implied that common alder and its seeds and seedlings are at risk to be infected by P. alni. In addition, other Phytophthora species are able to infect this kind of material showing their relative host non-specificity. This is one important finding concerning alder regeneration in infected areas, and the possibility of disease spread on this plant material.Key words: Alder diseases; virulence; zoospore suspension; V8 agar; forest pathology. ResumenSusceptibilidad de las semillas y brotes de aliso común (Alnus glutinosa) a Phytophthora alni y otras especies del género Phytophthora Phytophthora alni es un patógeno muy destructivo de los alisos (Alnus spp.) que se está expandiendo por toda Europa. Recientemente este patógeno ha sido citado como causante de enfermedades del aliso común (Alnus glutinosa) en España. Semillas y plántulas de A. glutinosa fueron analizadas in vitro para ver su susceptibilidad a Phytophthora alni y otras especies del género Phytophthora. En el experimento se usaron aislamientos de P. alni ssp. alni, P. cinnamomi, P. citrophthora, P. nicotianae y P. palmivora. Las semillas fueron inoculadas con una suspension de zoosporas mientras que las plántulas fueron inoculadas con bloques uniformes de micelio de agar de las especies de Phytophthora utilizadas. La susceptibilidad fue calculada evaluando la germinación de las semillas y la mortalidad de las plántulas después de 42 y 67 días tras la inoculación respectivamente. Los ratios de germinación de las semillas y de mortalidad de las plántulas variaron significativamente entre los aislamientos utilizados. Los resultados demostraron que el aliso común y sus semillas y plántulas tienen riesgo de ser infectados por P. alni. Además, otras especies de Phytophthora fueron capaces de infectar, lo que evidenció una relativa falta de especificidad por el hospedante. Estos datos son importantes por su transcendencia para la regenaración del aliso en las áreas infectadas, y la dispersión de la enfermedad en este material vegetal.
Phytophthora decline of riparian alder (Alnus spp.) has been reported in several European countries (2). Death of common alder (Alnus glutinosa) due to Phytophthora alni has also been reported in Spain (4). During several surveys of alder trees in September 2012, typical dieback symptoms, including sparse small yellowish foliage and the presence of rusty exudates on the bark at the collar and lower stem were observed in A. glutinosa growing on the banks of the river Tera (Langa de Duero, Soria, 41°36′34″ N, 3°25′10″ W, elevation 851 m) and the river Tormes (La Maya, Salamanca, 40°41′42″ N, 5°35′36″ W, elevation 833 m). Bark samples plus cambium were taken from the active lesions at collar region, cut into small pieces, dried on filter paper, and plated on V8-PARPH agar (2). The samples were incubated for 4 days at 20°C in the dark before obtaining the Phytophthora isolates. Colonies developed on V8 juice agar (V8A) had limited aerial mycelium at the center and displayed radiate and slightly chrysanthemum-like growth pattern. Mycelial growth was optimal at 25°C (radial growth rate, 8.2 mm d–1), whereas no growth was observed at 32°C. Isolates were homothallic with paragynous antheridia, smooth-walled spherical (very rarely elongated) oogonia (22.8 to 30.6 μm diam.) and both plerotic and aplerotic golden brown oospores (21.3 to 28.5 μm diam.). In non-sterile soil extracts, the isolates produced abundant sporangia (31.5 to 57.2 × 21.3 to 38.4 μm; length:breadth ratio 1.2 to 1.6) borne terminally on unbranched or sympodial sporagiophores, occasionally attached laterally to the sporangiophores. Sporagia were non-caducous, semipapillate, mainly ovoid and obpyriform, obovoid to limoniform but sometimes distorted with two apices. On the basis of the morpho-physiological features, the isolates resembled P. plurivora (formerly identified as P. citricola) (3). To confirm this, genomic DNA was extracted and subjected to PCR. The internal transcribed spacer (ITS) region of the rDNA was amplified using the ITS-6 (5′ GAAGGTGAAGTCGTAACAAGG 3′) and ITS-4 (5′ TCCTCCGCTTATTGATATGC 3′) primers before sequencing (Secugen, Madrid, Spain). The sequences were deposited in the EMBL/GenBank database (Accession Nos. KF413074 and KF413075). In order to perform the pathogenicity test, 10 A. glutinosa seedlings (2 years old) per isolate were inoculated by using the under-bark inoculation technique (1) and 10 control seedlings were inoculated with V8A. Seedlings were incubated in a growth chamber at 22.5°C with a 14-h photoperiod. Three months after inoculation, all inoculated plants wilted and died, whereas the control plants showed no disease symptoms. To fulfill Koch's postulates, the pathogen was re-isolated from the necrotic lesions developed around inoculation points, thus confirming its pathogenicity. P. plurivora has been found to be present in rhizosphere soil beneath Alnus spp. and to cause aerial canker and collar rot on alder trees in Austria, Germany, and Romania (2,3). Further studies and surveys are essential to determine the distribution, extent of damage, and potential interactions with other alder pathogens (e.g., P. alni). To our knowledge, this is the first record of P. plurivora affecting A. glutinosa in Spain. References: (1) T. Jung et al. Eur. J. For. Pathol. 26:253, 1996. (2) T. Jung and M. Blaschke. Plant Pathol. 53:197, 2004. (3) T. Jung and T. I. Burgess. Persoonia 22:95, 2009. (4) A. Solla et al. Plant Pathol. 59:798, 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.