The miscibility of a series of binary blends such as polystyrene/poly(methyl methacrylate) (PS/PMMA), polystyrene/poly(vinyl chloride)(PS/PVC), poly(vinyl chloride)/poly(polymethyl methacrylate)(PVC/PMMA) and poly(ethylene-co-vinyl alcohol)/poly(lactide-co-glycolide acid) PEVAL/PLGA with equal ratios and poly(ethylene oxide)/poly(hydroxyl propyl methyl cellulose) (PEO/PHPMC) containing 30 and 70 wt% PEO, which were randomly chosen among the widely systems reported in the literature, was investigated by a new method based on a direct analysis in real-time coupled with time-of-flight mass spectrometry (DART-ToF-MS). To reach this goal these pairs of polymers and copolymers were prepared by solvent casting method. As a first step, the DSC technique was undertaken in this work to highlight the published results on the miscibility of these binary systems. The thermogravimetry analysis (TGA) was used to define the optimum decomposition temperature of these blends programmed for the study of miscibility using the DART-ToF-MS technique. The results obtained by this method based on the comparison of the nature of the fragments resulting from the isothermal decomposition of the blend with those of their pure components have been very effective in demonstrating the character of miscibility of these systems. Indeed, it was found that the PS/PMMA-50 and PS/PVC-50 blends were immiscible, PVC/PMMA-50 and PEVAL/PLGA-50 miscible, and the PEO/PHMC partially miscible. This method, which is rapid and uses a very small amount of sample (1–2 mg) can be extended in its application to other blends whose other methods used have shown their limits due to the intrinsic properties of the polymers involved.
In this work, the isothermal decomposition of poly(methyl methacrylate) synthesized in bulk by the radical route of methyl methacrylate in the presence of azobisisobutyronitrile as the initiator was carried out and monitored for the first time with the DART-Tof-MS technique at different temperatures. Nuclear magnetic resonance (NMR) analysis revealed a predominantly atactic microstructure, and size-exclusion chromatography (SEC) analysis indicated a number average molecular weight of 3 × 105 g·mol−1 and a polydispersity index of 2.47 for this polymer. Non-isothermal decomposition of this polymer carried out with thermogravimetry analysis (TGA) showed that the weight loss process occurs in two steps. The first one starts at approximately 224 °C and the second at 320 °C. The isothermal decomposition of this polymer carried out and monitored with the DART-Tof-MS method revealed only one stage of weight loss in this process, which begins at approximately 250 °C, not far from that of the second step observed in the case of the non-isothermal process conducted with the TGA method. The results obtained with the MS part of this technique revealed that the isothermal decomposition of this polymer regenerates a significant part of methyl methacrylate monomer, which increases with temperature. This process involves radical chain reactions leading to homolytic chain scissions and leading to the formation of secondary and tertiary alkyl radicals, mainly regenerating methyl methacrylate monomer through an unzipping rearrangement. Although they are in the minority, other fragments, such as the isomers of 2-methyl carboxyl, 4-methyl, penta-2,4-diene and dimethyl carbate, are also among the products detected. At 200 °C, no trace of monomer was observed, which coincides with the first step of the weight loss observed in the TGA. These compounds are different to those reported by other researchers using TGA coupled with mass spectrometry in which methyl isobutyrate, traces of methyl pyruvate and 2,3-butanonedione were detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.