The Center for Hydrometeorology and Remote Sensing (CHRS) has created the CHRS Data Portal to facilitate easy access to the three open data licensed satellite-based precipitation datasets generated by our Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system: PERSIANN, PERSIANN-Cloud Classification System (CCS), and PERSIANN-Climate Data Record (CDR). These datasets have the potential for widespread use by various researchers, professionals including engineers, city planners, and so forth, as well as the community at large. Researchers at CHRS created the CHRS Data Portal with an emphasis on simplicity and the intention of fostering synergistic relationships with scientists and experts from around the world. The following paper presents an outline of the hosted datasets and features available on the CHRS Data Portal, an examination of the necessity of easily accessible public data, a comprehensive overview of the PERSIANN algorithms and datasets, and a walk-through of the procedure to access and obtain the data.
Abstract. Over the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.
Given the continuous advancement in the retrieval of precipitation from satellites, it is important to develop methods that incorporate satellite‐based precipitation data sets in the design and planning of infrastructure. This is because in many regions around the world, in situ rainfall observations are sparse and have insufficient record length. A handful of studies examined the use of satellite‐based precipitation to develop intensity‐duration‐frequency (IDF) curves; however, they have mostly focused on small spatial domains and relied on combining satellite‐based with ground‐based precipitation data sets. In this study, we explore this issue by providing a methodological framework with the potential to be applied in ungauged regions. This framework is based on accounting for the characteristics of satellite‐based precipitation products, namely, adjustment of bias and transformation of areal to point rainfall. The latter method is based on previous studies on the reverse transformation (point to areal) commonly used to obtain catchment‐scale IDF curves. The paper proceeds by applying this framework to develop IDF curves over the contiguous United States (CONUS); the data set used is Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN‐CDR). IDFs are then evaluated against National Oceanic and Atmospheric Administration (NOAA) Atlas 14 to provide a quantitative estimate of their accuracy. Results show that median errors are in the range of (17–22%), (6–12%), and (3–8%) for one‐day, two‐day and three‐day IDFs, respectively, and return periods in the range (2–100) years. Furthermore, a considerable percentage of satellite‐based IDFs lie within the confidence interval of NOAA Atlas 14.
Understanding causal relations is of utmost importance in hydrology and climate research for systems identification, prediction, and understanding systems behavior in a changing climate. Traditionally, researchers in hydrometeorology attempted to study causal questions by conducting controlled experiments using numerical models. This approach, however, in most cases of interest provides uncertain results because the models are approximate representation of the natural system. An alternative approach that has recently drawn significant attention in several fields is to infer causal relations from purely observational data. It possesses several traits to its utility particularly in hydrometeorology due to the rapid accumulation of in situ and remotely sensed data records. The first objective of this study is to present a brief description of four causal discovery methods (Granger causality, Transfer Entropy, graph‐based algorithms, and Convergent Cross Mapping) with special emphasis on the assumptions on which they are built. Second, using synthetic data generated from a hydrological model, we assess their performance in retrieving causal information taking into account sensitivity to sample size and presence of noise. Last, we use causal analysis to examine and formulate hypotheses on causal drivers of evapotranspiration in a shrubland region during summer and winter seasons. An interpretation of the hypotheses based on canopy seasonal dynamics and evapotranspiration processes is presented. It is hoped that the results presented here can be useful in guiding researchers studying hydrometeorological systems as to which causal method is most appropriate to the characteristics of the system under study.
This study presents the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Dynamic Infrared Rain Rate near real-time (PDIR-Now) precipitation dataset. This dataset provides hourly, quasi-global, Infrared-based precipitation estimates at 0.04°x0.04° spatial resolution with a short latency (15 – 60 minutes). It is intended to supersede PERSIANN- Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near real-time product of the PERSIANN family. We firstly provide a brief description of the algorithm’s fundamentals and the input data used for deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and sub-daily scales. Lastly, the article presents information on the dissemination of the dataset through the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period (2017-2018), demonstrate the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the estimation of rain/no-rain days as demonstrated by a Critical Success Index (CSI) of 0.53 compared to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as sub-daily precipitation rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.