Food security has become an increasingly important challenge for all countries globally, particularly as the world population continues to grow and arable lands are diminishing due to urbanization. Water scarcity and lack of labor add extra negative influence on traditional agriculture and food production. The problem is getting worse in countries with arid lands and harsh climate, which exacerbates the food gap in these countries. Therefore, smart and practical solutions to promote cultivation and combat food production challenges are highly needed. As a controllable environment, greenhouses are the perfect environment to improve crops’ production and quality in harsh climate regions. Monitoring and controlling greenhouse microclimate is a real problem where growers have to deal with various parameters to ensure the optimal growth of crops. This paper shows our research in which we established a multi-tier cloud-based Internet of Things (IoT) platform to enhance the greenhouse microclimate. As a case study, we applied the IoT platform on cucumber cultivation in a soilless medium inside a commercial-sized greenhouse. The established platform connected all sensors, controllers, and actuators placed in the greenhouse to provide long-distance communication to monitor, control, and manage the greenhouse. The implemented platform increased the cucumber yield and enhanced its quality. Moreover, the platform improved water use efficiency and decreased consumption of electrical energy. Based on the positive impact on water use efficiency and enhancement on cucumber fruit yield and quality, the established platform seems quite suitable for the soilless greenhouse cultivation in arid regions.
Water scarcity is a major constraint in arid and semi-arid regions. Crops that require less irrigation water and those, which are considered drought-tolerant such as date palm (Phoenix dactylifera L.), are dominant in these regions. Despite the tolerance of these crops, the development of technologies that ensure efficient use of irrigation water is imperative. Taking these issues into consideration, the study was conducted to investigate the impact of limited irrigation water using a new subsurface irrigation system (SSI) on gas exchange, chlorophyll content, water use efficiency, water productivity, fruit physicochemical characteristics, and yield of date palm (cv. Sheshi). The impact of the SSI system was compared with two surface irrigation systems, namely, surface drip irrigation (SDI) and surface bubbler irrigation (SBI). The field experiment was carried out during 2018 and 2019 at the Date Palm Research Center of Excellence, King Faisal University, Kingdom of Saudi Arabia. The annual crop evapotranspiration (ETc) was 2544 mm. The applied irrigation water was set at 50%, 75%, and 125% of ETc for SSI, SDI, and SBI, respectively, which were based on the higher crop water productivity recorded in an initial field study. The total annual volume of water applied for SSI, SDI, and SBI was 22.89, 34.34, and 57.24 m3 palm−1, respectively. The crop water productivity (CWP) at the SSI system was significantly higher, with a value of 1.15 kg m−3, compared to the SDI (0.51 kg m−3) and SBI systems (0.37 kg m−3). The photosynthetic water use efficiency (WUE) was 10.09, 9.96, and 9.56 μmol CO2 mmol−1 H2O for SSI, SBI, and SDI, respectively. The maximum chlorophyll content (62.4 SPAD) was observed in SBI, followed by SSI (58.9 SPAD) and SDI (56.9 SPAD). Similarly, net photosynthesis and the transpiration rate were significantly higher in SBI and lowest in SSI. However, the SSI system substantially increased palm yield and enhanced fruit quality. The new SSI system, through its positive impact on the efficiency of irrigation water use and enhancement on fruit yield and fruit quality of date palm, seems quite suitable for the irrigation of palm trees in arid and semi-arid regions.
This review lists 132 species of insect and mite pests associated with date palm (Phoenix dactylifera L.) grown worldwide. These species are distributed among eight insect orders and 30 families, besides one order of mite comprising nine families. Most of the species (52) were reported on the leaf (frond), while 26 species were associated with the roots and trunk. Green fruits with their stalks and stored dates hosted 27 species each. Coleoptera represented 41% of the listed pest species, followed by Hemiptera (20%), Acari (16%) and Lepidoptera (12%). Although the number of date palm pest species seems to be high, only a few species are considered major pests of economic importance. The major pests include the red palm weevil, (Rhynchophorus ferrugineus), old world date mite (Oligonychus afrasiaticus), lesser date moth (Batrachedra amydraula), Dubas date bug (Ommatissus lybicus), green pit scale (Palmaspis phoenicis), carob moth (Ectomyelois ceratoniae), date palm longhorn beetle (Jebusaea hammerschmidti), and almond moth (Cadra cautella). The review also lists 90 species of predators and parasitoids representing nine orders and 23 families, indicating their potential role in date palm pest management. The paper summarizes the current knowledge on management tactics including monitoring, agrotechnical measures, biological control, semiochemical-based control and chemical control. The implementation of integrated pest management strategies against major pests, based on the above-mentioned tactics, is discussed. The information gathered in this review indicates that strict quarantine, semiochemicals including pheromones and training and education of farmers are expected to play a central role in area-wide IPM of major date palm pests.
The current study was designed to investigate the insecticide role of volatile constituents produced from cell suspensions of T. vulgaris and O. basilicum against R. ferrugineus. Constituents were extracted from cell suspension after 40 days. Growth kinetics were measured with an inoculation of Verticillium dahliae and identified by GC-MS. Total volatile phenolic constituents were measured. Insecticidal activity against R. ferrugineus (adult) and proteolytic enzyme activity in larvae were assessed. GC-MS showed that the T. vulgaris extract has higher amounts of thymol, p-cymene, γ-terpinene, β-caryophyllene, and linalool in comparison to the O. basilicum extract, which is rich in estragole, β-terpineol, (E)-β-ocimene, 1,8-cineole, germacrene D, and eugenol. The T. vulgaris extract showed an LC50 of 1032 µg/mL, followed by O. basilicum with an LC50 of 1246 µg/mL. The IC50 values against the total proteases were 110.8 and 119.4 µg/mL for T. vulgaris and O. basilicum, respectively. The IC50 for the trypsin-like serine proteinase assessment was 81.6 and 91 µg/mL for T. vulgaris and O. basilicum, respectively. Cysteine, chymotrypsin, and metalloproteinase assessment showed an IC50 above 5000 µg/mL for both extracts. The study is proposed as a potential approach to use T. vulgaris and O. basilicum extract as a bio-insecticide against R. ferrugineus using an accessible and efficient cell suspension technique.
Trigonella stellata has used in folk medicine as palatable and nutraceutical herb. It also regulates hypocholesterolemia, hypoglycemia, and has showed anti-inflammatory activities as well as antioxidants efficacy. Osteoporosis is a one of bone metabolic disorders and is continuously increasing worldwide. In the present study, caffeic acid was isolated from Trigonella stellata and identified using 1 D- and 2 D-NMR spectroscopic data. Caffeic acid was investigated on osteoblast and osteoclast in vitro using mice bone marrow-derived mesenchymal cells. Caffeic acid played reciprocal proliferation between osteoblast and osteoclast cells and accelerated the bone mineralization. It was confirmed by cytotoxicity, alkaline phosphatase (ALP), alizarin red S (ARS), and Tartrate resistant acid phosphatase (TRAP) assay. Caffeic acid regulated the osteogenic marker and upregulated the osteopontin, osteocalcin, and bone morphogenic proteins (BMP). Quantitative real time PCR and Western blot were used to quantify the mRNA and protein markers. It also regulated the matrix metalloprotease-2 (MMP-2) and cathepsin-K proteolytic markers in osteoclast cells. In addition, caffeic acid inhibited bone resorption in osteoclast cells. On the other hand, it upregulate osteoblast differentiation through stimulation of extracellular calcium concentrations osteoblast differentiation, respectively. The results also were confirmed through in silico docking of caffeic acid against cathepsin-B and cathepsin-K markers. These findings revealed that caffeic acid has a potential role in bone-metabolic disorder through its multifaceted effects on osteoblast and osteoclast regulations and controls osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.