The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.
The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO(2) and RO(2)) in the Earth's atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European photoreactor EUPHORE (Valencia, Spain), utilising various instrumentation including a chemical-ionisation-reaction time-of-flight mass-spectrometer (CIR-TOF-MS) measuring volatile organic compounds/oxygenated volatile organic compounds (VOCs/OVOCs), a laser induced fluorescence (LIF) system for measuring HO(2) radical products and a peroxy radical chemical amplification (PERCA) instrument measuring HO(2) + ΣRO(2). The ethene + ozone reaction system was investigated with and without an OH radical scavenger, in order to suppress side reactions. Radical concentrations were measured under dry and humid conditions and interpreted through detailed chemical chamber box modelling, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for ethene, which was updated to include a more explicit representation of the ethene-ozone reaction mechanism.The rate coefficient for the ethene + ozone reaction was measured to be (1.45 ± 0.25) × 10(-18) cm(3) molecules(-1) s(-1) at 298 K, and a stabilised Criegee intermediate yield of 0.54 ± 0.12 was determined from excess CO scavenger experiments. An OH radical yield of 0.17 ± 0.09 was determined using a cyclohexane scavenger approach, by monitoring the formation of the OH-initiated cyclohexane oxidation products and HO(2). The results highlight the importance of knowing the [HO(2)] (particularly under alkene limited conditions and high [O(3)]) and scavenger chemistry when deriving radical yields. An averaged HO(2) yield of 0.27 ± 0.07 was determined by LIF/model fitting. The observed yields are interpreted in terms of branching ratios for each channel within the postulated ethene ozonolysis mechanism.
Abstract. Secondary Organic Aerosol (SOA) affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE) simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i) propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii) provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii) explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.