In the present work, we synthesized CoxZn1-xFe2O4 spinel ferrite nanoparticles (x= 0, 0.1, 0.2, 0.3 and 0.4) via the precipitation and hydrothermal-joint method. Structural parameters were cross-verified using X-ray powder diffraction (XRPD) and electron microscopy-based techniques. The magnetic parameters were determined by means of vibrating sample magnetometry. The as-synthesized CoxZn1-xFe2O4 nanoparticles exhibit high phase purity with a single-phase cubic spinel-type structure of Zn-ferrite. The microstructural parameters of the samples were estimated by XRD line profile analysis using the Williamson–Hall approach. The calculated grain sizes from XRPD analysis for the synthesized samples ranged from 8.3 to 11.4 nm. The electron microscopy analysis revealed that the constituents of all powder samples are spherical nanoparticles with proportions highly dependent on the Co doping ratio. The CoxZn1-xFe2O4 spinel ferrite system exhibits paramagnetic, superparamagnetic and weak ferromagnetic behavior at room temperature depending on the Co2+ doping ratio, while ferromagnetic ordering with a clear hysteresis loop is observed at low temperatures (5K). We concluded that replacing Zn2+ ions with Co2+ ions changes both the structural and magnetic properties of ZnFe2O4 nanoparticles.
In this study, a new organic-inorganic hybrid metal compound (C 5 H 14 N 2) 2 [SnCl 6 ] 2 .5H 2 O was crystallized at room temperature in the orthorhombic system (space group P2 1 2 1 2 1) where the structure is determined by single crystal X-ray diffraction analysis. The examination of the structure shows the cohesion and stability of the atomic arrangement result from the establishment of N-H•••Cl, O(W)-H(W)•••Cl, N-H•••O(W) and O(W)-H(W)•••O(W) hydrogen bonds between 1-methylpiperazine-1,4-diium (C 5 H 14 N 2) 2+ cations, isolated (SnCl 6) 2anions and water molecules to form organic and inorganic layers parallel to the (a, c) plane and alternate along the b-axis. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D fingerprint plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The solid phase FTIR and FT-Raman spectra of this compound have been recorded in the regions 400-4000 and 100-500 cm −1 , respectively. The vibrational frequencies were also predicted from the calculated intensities by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. Besides, the optical proprieties were investigated by UV-visible and photoluminescence spectroscopy studies in the region 200-700 nm and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. Moreover, this compound was characterized by thermal analysis between 300 and 500 K which revealing two phase transitions. Finally, X-ray photoelectron spectroscopy (XPS) analysis is reported to determine the degree of oxidation of tin in this compound and analyzing the surface chemistry of (C 5 H 14 N 2) 2 [SnCl 6 ] 2 .5H 2 O.
A novel hybrid compound, bis(4-methylanilinium)hexachlorostannate(IV) monohydrate, formulated as (C 7 H 10 N) 2 [SnCl 6 ]•H 2 O, has been prepared and characterized by powder and single crystal X-ray diffraction (XRD), Hirshfeld surface analysis, infrared spectroscopy (IR), optical study, differential thermal analysis(DTA) and X-ray photoelectron spectroscopy analysis (XPS). The title compound crystallizes in the monoclinic space group P2 1 /c with a = 13.093(1)Å, b =7.093(6)Å, c =24.152(2)Å, β =98.536(4)⁰ and V =2218.4(4) Å 3. Their crystal structure exhibits alternating inorganic layers parallel to the (ab) plane at z= n/2.The different entities, [SnCl 6 ] 2-, organic cations and water molecules, are connected via hydrogen bonds to form a three-dimensional network. The powder XRD data confirms the phase purity of the crystalline sample. The intermolecular interactions were investigated by Hirshfeld surfaces. The vibrational absorption bands were identified by IR spectroscopy and have been discussed. The optical properties of the crystal were studied by using optical absorption, UV-visible absorption and photoluminescence spectroscopy studies. The compound was also characterized by DTA to determine its thermal behavior with respect to the temperature. Finally, XPS technique is reported for analyzing the surface chemistry of this compound.
A novel metal-organic framework assembled from Y(iii), Li(i), and terephthalate ligand, formulated as [LiY(BDC)2(H2O)·2(H2O)] (1) (H2BDC = terephthalic acid), has been obtained as single phase under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by powder X-ray diffraction (PXRD), thermal analyses (TG-MS and DSC), vibrational spectroscopy (FTIR), scanning/transmission electron microscopy (SEM-EDX, TEM, SAED, and BF-STEM-EDX), and powder X-ray thermodiffractometry (HT-XRD). 1 crystallizes in monoclinic space group (P21/c, with a = 11.6415(7) Å, b = 16.0920(4) Å, c = 13.2243(8) Å and β = 132.23(1)°) and possesses a 3D framework with 1D trigonal channels running along the [101] direction containing water molecules. The structure of 1 is made up of unusual four-membered rings formed by edge- and vertex-shared {YO8} and {LiO4} polyhedra. The four-membered rings are isolated and connected to each other via carboxylate groups. HT-XRD reveals that 1 undergoes phase transformation upon the dehydration process which is a reversible process involving a spontaneous rehydration characterized by fast kinetics. Topological studies were also performed revealing that 1 has a new 2-nodal net.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.