Antimicrobial Dyes Polymers a b s t r a c t Schiff bases and their complexes are versatile compounds synthesized from the condensation of an amino compound with carbonyl compounds and widely used for industrial purposes and also exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behaviour. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles examples of the most promising applied Schiff bases and their complexes in different areas.
Three novel Cr(III),VO(II) and Ni(II) imine complexes derived from the condensation of 2‐aminophenol (AP) with 2‐hydroxynaphthaldehyde (HN) were synthesized. The prepared HNAP imine ligand and its complexes were investigated via various physicochemical tools. The results suggest that the parent ligand behaves as a dibasic tridentate ONO ligand, when coordinated to Cr(III) in octahedral and to Ni(II) in tetrahedral geometry. In the case of VO(II), it coordinates in distorted square pyramidal geometry. Also, the prepared compounds were screened for their antimicrobial activities against pathogenic bacteria, Escherichia coli (−ve), Bacillus subtilis (+ve) and Staphylococcus aureus (+ve), and some types of fungi, Aspergillus niger, Candida glabrata and Trichophyton rubrum. The results indicate that the complexes show a stronger antimicrobial efficiency compared to the pro‐ligand. The interaction of the prepared complexes with calf thymus DNA was investigated using spectral, viscosity and gel electrophoresis measurements. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order HNAPCr > HNAPV > HNAPNi. The cytotoxic activity of the prepared compounds on human colon carcinoma cells (HCT‐116 cell line), hepatic cellular carcinoma cells (HepG‐2cell line) and breast carcinoma cells (MCF‐7cell line) was examined. From these results it is found that the investigated complexes have potent cytotoxicity against growth of carcinoma cells compared to the corresponding imine pro‐ligand.
In the present contribution, some novel Cu(II) complexes were synthesized from tri-and tetradentate imine ligands. All the prepared compounds were elucidated by different physicochemical methods. Density Functional Theory calculations were carried out to explain the equilibrium geometry of the bsisnph and npisnph ligands and their Cu(II) complexes. Interaction of the synthesized ligands with Cu(II) affords nano-sized particles via TEM. The catalytic potentials of the prepared complexes has been tested within the oxidation of benzyl alcohol using an environmental friendly terminal oxidant, i.e. H 2 O 2 . The effect of various parameters, e.g. solvents, temperature and amount of catalyst was investigated. A mechanistic pathway of the catalytic oxidation was tentatively described and discussed.
Graphical AbstractKeywords Cu(II) Schiff base complexes · TEM · Benzyl alcohol · Density Functional Theory · Catalytic activity · Hydrogen peroxide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.