In this article, inspired by the concepts of extended b-metric spaces, we introduce the notion of complex valued extended b-metric spaces. Using this new idea, some fixed point theorems involving rational contractive inequalities are proved. The established results herein augment several significant work in the comparable literature.
In this manuscript, a new family of contractions called Jaggi-type hybrid
G
−
ϕ
-contraction is introduced and some fixed point results in generalized metric space that are not deducible from their akin in metric space are obtained. The preeminence of this class of contractions is that its contractive inequality can be extended in a variety of manners, depending on the given parameters. Consequently, several corollaries that reduce our result to other well-known results in the literature are highlighted and analyzed. Substantial examples are constructed to validate the assumptions of our obtained theorems and to show their distinction from corresponding results. Additionally, one of our obtained corollaries is applied to set up unprecedented existence conditions for the solution of a family of integral equations.
<abstract><p>In this paper, new intuitionistic fuzzy fixed point results for sequence of intuitionistic fuzzy set-valued maps in the structure of $ b $-metric spaces are examined. A few nontrivial comparative examples are constructed to keep up the hypotheses and generality of our obtained results. Following the fact that most existing concepts of Ulam-Hyers type stabilities are concerned with crisp mappings, we introduce the notion of stability and well-posedness of functional inclusions involving intuitionistic fuzzy set-valued maps. It is a familiar fact that solution of every functional inclusion is a subset of an appropriate space. In this direction, intuitionistic fuzzy fixed point problem involving $ (\alpha, \beta) $-level set of an intuitionistic fuzzy set-valued map is initiated. Moreover, novel sufficient criteria for existence of solutions to an integral inclusion are investigated to indicate a possible application of the ideas presented herein.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.