Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generate target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells (EpiSCs) cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof-of-concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are short with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.
Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are short with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.