The wave concept iterative procedure (WCIP) is used to analyze arbitrarily shaped frequency selective surfaces (FSS). The WCIP method is developed from the fast modal transform based on a two‐dimensional fast Fourier transform algorithm. Using the proposed procedure, less computing time and memory are needed to calculate the scattering parameters of the FSS structure. The method is applied to the modeling of an FSS structure of a rectangular patch and a comparison with experimental results confirms good agreement.
The wave concept iterative procedure (WCIP) is used to analyze a quasi‐square open metallic ring frequency selective surface (FSS). The quasi‐square open metallic ring FSS is dual‐polarized. When the incident plane wave is polarized in a direction parallel to the FSS’ coupled parallel strips, it shows two rejecting bands. Moreover, another rejecting band can be obtained if the source plane wave is perpendicularly polarized with respect to the FSS’ coupled parallel strips. The three resonant frequencies are inversely proportional to the length of the FSS’ coupled strips to provide an easy fine tuning of the FSS structure. The simulated results obtained using WCIP are compared to the measured results, and a good agreement is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.