IntroductionIn Europe, vitamin D deficiency is highly prevalent varying between 40% and 60% in the healthy general adult population. The consequences of vitamin D deficiency for sepsis and outcome in critically ill patients remain controversial. We therefore systematically reviewed observational cohort studies on vitamin D deficiency in the intensive care unit.MethodsFourteen observational reports published from January 2000 to March 2014, retrieved from Pubmed and Embase, involving 9,715 critically ill patients and serum 25-hydroxyvitamin D3 (25 (OH)-D) concentrations, were meta-analysed.ResultsLevels of 25 (OH)-D less than 50 nmol/L were associated with increased rates of infection (risk ratio (RR) 1.49, 95% (confidence interval (CI) 1.12 to 1.99), P = 0.007), sepsis (RR 1.46, 95% (CI 1.27 to 1.68), P <0.001), 30-day mortality (RR 1.42, 95% (CI 1.00 to 2.02), P = 0.05), and in-hospital mortality (RR 1.79, 95% (CI 1.49 to 2.16), P <0.001). In a subgroup analysis of adjusted data including vitamin D deficiency as a risk factor for 30-day mortality the pooled RR was 1.76 (95% CI 1.37 to 2.26, P <0.001).ConclusionsThis meta-analysis suggests that vitamin D deficiency increases susceptibility for severe infections and mortality of the critically ill.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-014-0660-4) contains supplementary material, which is available to authorized users.
Our data suggest that, even though event numbers are small, perioperative restrictive fluid management does not increase oliguria or postoperative ARF while decreasing intraoperative fluid intake, irrespective of targeting reversal of oliguria or not.
Current literature favors targeting circulatory optimization by GDT without targeting oliguria reversal to prevent ARF. Future studies are needed to investigate the hypothesis that targeting oliguria reversal does not prevent ARF in critically ill and surgical patients.
High early fluid input was associated with DCI. Invasive hemodynamic monitoring was feasible to reduce fluid input while maintaining preload. These results indicate that fluid loading beyond a normal preload occurs, may increase DCI risk, and can be minimized with TPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.