This paper presents an estimation of leakage power and delay for 1-bit Full Adder (FA)designed which is based on Leakage Control Transistor (LCT) NAND gates as basic building block. The main objective is to design low leakage full adder circuit with the help of low and high threshold transistors. The simulations for the designed circuits performed in cadence virtuoso tool with 45 nm CMOS technology at a supply voltage of 0.9 Volts. Further, analysis of effect of parametric variation on leakage current and propagation delay in CMOS circuits is performed. The saving in leakage power dissipation for LCT NAND_HVT gate is up to 72.33% and 45.64% when compared to basic NAND and LCT NAND gate. Similarly for 1-bit full adder the saving is up to 90.9% and 40.08% when compared to basic NAND FA and LCT NAND.
This paper presents an energy efficient 1-bit full adder designed with a low voltage and high performance internal logic cells which leads to have abridged Power Delay Product (PDP). The customized XNOR and XOR gates, a necessary entity, are also presented. The simulations for the designed circuits performed in cadence virtuoso tool with 45-nm CMOS technology at a supply voltage of 0.9 Volts. The proposed 1-bit adder cell is compared with various trendy adders based on speed, power consumption and energy (PDP). The proposed adder schemes with modified internal entity cells achieve significant savings in terms of delay and energy consumption and which are more than 77% and 40.47% respectively when compared with conventional “C-CMOS” 1-bit full adder and other counter parts.
In this paper, two performance metrics power and delay are estimated for various XOR-XNOR circuits and Multiplexer for designing 4-2 compressor. The main objective is to design an energy efficient compressor for computing applications in FIR filter. The simulations for the designed circuits performed in cadence virtuoso tool with 45 nm CMOS technology at a supply voltage of 0.9 Volts. The proposed 4-2 compressors consist of six blocks out of which two XOR-XNOR blocks and four MUX blocks. The average power, delay and energy consumed by the proposed compressor which is based on 5T XOR-XNOR and GDIMUX design is 85.72 nW, 62.53 pS and 5.36 aJ respectively
This This paper presents energy efficient GDI based 1-bit full adder cells with low power consumption and lesser delay with full swing modified basic logic gates to have reduced Power Delay Product (PDP). The various full adders are effectively realized by means of full swing OR, AND and XOR gates with the noteworthy enhancement in their performance. The simulations for the designed circuits performed in cadence virtuoso tool with 45-nm CMOS technologies at a supply voltage of 1 Volts. The proposed 1-bit adder cells are compared with various basic adders based on speed, power consumption and energy (PDP). The proposed adder schemes with full swing basic cells achieve significant savings in terms of delay and energy consumption and which are more than 41% and 32% respectively in comparison to conventional “C-CMOS” 1-bit full adder and other existing adders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.