The commercial availability of inorganic/organic precursors for sol-gel formulations is very high and increases day by day. In textile applications, the precursor-synthesized sol-gels along with functional chemicals can be deposited onto textile fabrics in one step by rolling, padding, dip-coating, spraying or spin coating. By using this technology, it is possible to provide fabrics with functional/multi-functional characteristics including flame retardant, anti-mosquito, water- repellent, oil-repellent, anti-bacterial, anti-wrinkle, ultraviolet (UV) protection and self-cleaning properties. These surface properties are discussed, describing the history, basic chemistry, factors affecting the sol-gel synthesis, progress in sol-gel technology along with various parameters controlling sol-gel technology. Additionally, this review deals with the recent progress of sol-gel technology in textiles in addressing fabric finishing, water repellent textiles, oil/water separation, flame retardant, UV protection and self-cleaning, self-sterilizing, wrinkle resistance, heat storage, photochromic and thermochromic color changes and the improvement of the durability and wear resistance properties.
This review analyzes thermal and electrically conductive properties of composites and how they can be influenced by the addition of special nanoparticles. Composite functional characteristics—such as thermal and electrical conductivity, phase changes, dimensional stability, magnetization, and modulus increase—are tuned by selecting suitable nanoparticle filler material. The conductivity of composites can be related to the formation of conductive pathways as nanofiller materials form connections in the bulk of a composite matrix. With increasing use of nanomaterial containing composites and relatively little understanding of the toxicological effects thereof, adequate disposal and recyclability have become an increasing environmental concern.
Nanosized particles can exhibit unexpected properties different from those of the original bulk material. The basic premise is that properties can dramatically change when a substance's size is reduced to the nanometre range. The applications of nanoparticles, e.g. carbon black or some finishing agents in the textile industry, have a long tradition but are in fact not part of nanotechnology. A typical feature of nanotechnology in textiles is to use nanoparticles with some systematic arrangements. In this manuscript, the main features of nanotechnology are summarized. A core part is devoted to the description of the nanoparticle behaviour arising from their small dimensions. The problem of nanoparticle stabilization is denoted. Selected applications of nanoparticles in the textile field are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.