Identifying emotions has become essential for comprehending varied human behavior during our daily lives. The electroencephalogram (EEG) has been adopted for eliciting information in terms of waveform distribution over the scalp. The rationale behind this work is twofold. First, it aims to propose spectral, entropy and temporal biomarkers for emotion identification. Second, it aims to integrate the spectral, entropy and temporal biomarkers as a means of developing spectro-spatial ( S S ) , entropy-spatial ( E S ) and temporo-spatial ( T S ) emotional profiles over the brain regions. The EEGs of 40 healthy volunteer students from the University of Vienna were recorded while they viewed seven brief emotional video clips. Features using spectral analysis, entropy method and temporal feature were computed. Three stages of two-way analysis of variance (ANOVA) were undertaken so as to identify the emotional biomarkers and Pearson’s correlations were employed to determine the optimal explanatory profiles for emotional detection. The results evidence that the combination of applied spectral, entropy and temporal sets of features may provide and convey reliable biomarkers for identifying S S , E S and T S profiles relating to different emotional states over the brain areas. EEG biomarkers and profiles enable more comprehensive insights into various human behavior effects as an intervention on the brain.
Investigating gender differences based on emotional changes supports automatic interpretation of human intentions and preferences. This allows emotion applications to respond better to requirements and customize interactions based on affective responses. The electroencephalogram (EEG) is a tool that potentially can be used to detect gender differences. The main purpose of this paper is twofold. Firstly, it aims to use both linear and nonlinear features of EEG signals to identify emotional influences on gender behavior. Secondly, it aims to develop an automatic gender recognition model by employing optimization algorithms to identify the most effective channels for gender identification from emotional-based EEG signals. The EEGs of thirty healthy students from the University of Vienna have watched four short video clips depicting the emotions of anger, happiness, sadness and neutral. In this study, the wavelet transform (WT) de-noising technique, linear spectral mean frequency (meanF ) and nonlinear multiscale fuzzy entropy (M F E) features were used. The individual performance of these attributes was statistically examined using analysis of variance (ANOVA) to represent the gender behavior in the brain-emotion in females and males. Then, these two features were fused into a set of hybrid spectral-entropy attributes (SEA). Consequently, optimization algorithms including binary gravitation search algorithm (BGSA) and binary particle swarm optimization (BPSO), were employed to identify the optimal channels for gender classification. Finally, the k-nearest neighbors (kNN) classification technique was used for automatic gender identification of an emotional-based EEG dataset. The results show linear and nonlinear features are remarkable neuromarkers for investigating gender-based differences in emotional states. Moreover, the results show significant enhancement in the overall accuracy of classification achieved by using the BGSA optimization algorithm with the proposed hybrid SEA set when compared to individual features. Therefore, the proposed methods were effective in improving the process of automatic gender recognition from the emotional-based EEG signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.