Abstract:The predominantly hilly terrain of Penang Island combined with average maximum daily temperatures ranging between 27-35 o C and peak rainfall as high as 647 cm makes the overall area potentially susceptible to landslips. Over the recent past construction industry has shown a rapid growth mainly due to increase in the inflow of international tourists and other economic reasons. Eventually, the magnitude of disaster associated with landslides has also increased and that is one of the major concerns of engineering geologists and geotechnical engineers. With this background this paper attempts to characterize the largely granitic residual soils of Penang Island by discussing the nature, structural features, engineering behavior and field properties of soil samples extracted from 8 sites. These sites are distinctly chosen from a database of 31 sites for they are located over different prime geological formations. The mean values of various design properties at different depths are calculated and plotted to identify the property trend with depth and important behavioral features relevant to landslides are discussed. Similarly, compression index values are plotted against initial void ratio and liquid limit separately and resulting correlations are compared with the established ones. Correlations given by Azzous are found to hold good. Lastly, in the light of the lessons learnt from the past landslides and the current characterization results some improvements regarding slope instability problem are discussed.
Summary
Energy harvesting from pavements has been a topic of extensive research in the recent past. This domain has attracted not only the research community but also the industry and governmental authorities. The various sources exploited for energy harvesting from pavements and roadways are solar radiation, mechanical energy dissipated due to moving vehicles and pedestrians, geothermal energy, rainwater, and wind. This article presents an exhaustive and updated review of all potential means of energy harvesting from these sources. Following the introductory section, the article sequentially covers the energy harvesting methods and their research progress, materials, development of practical systems, commercial status, comparison of technologies, challenges, and concluding remarks. This study reveals that there is wide scope for further research and feasibility studies, which could lead to a wide‐spread implementation of the various technologies for energy harvesting from pavements and roads.
Penang Island of Malaysia is vulnerable to various natural hazards due to its hilly terrain and weather. Due to recent rapid population and economic growth, the probability of disaster associated with natural hazards has increased. This article characterizes geological and geotechnical parameters collected from field data that relate to natural hazard susceptibility. The areas of investigation were chosen so that each area lay on different geological formations. The variations in selected parameters with depth were obtained. The correlation within parameters was established and was found to be in agreement with that from other researchers. The investigation identifies parameters that can be used to evaluate the degree of hazard susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.