The cryptography employed against user files makes the effect of crypto-ransomware attacks irreversible even after detection and removal. Thus, detecting such attacks early, i.e. during pre-encryption phase before the encryption takes place is necessary. Existing crypto-ransomware early detection solutions use a fixed time-based thresholding approach to determine the pre-encryption phase boundaries. However, the fixed time thresholding approach implies that all samples start the encryption at the same time. Such assumption does not necessarily hold for all samples as the time for the main sabotage to start varies among different cryptoransomware families due to the obfuscation techniques employed by the malware to change its attack strategies and evade detection, which generates different attack behaviors. Additionally, the lack of sufficient data at the early phases of the attack adversely affects the ability of feature extraction techniques in early detection models to perceive the characteristics of the attacks, which, consequently, decreases the detection accuracy. Therefore, this paper proposes a Dynamic Pre-encryption Boundary Delineation and Feature Extraction (DPBD-FE) scheme that determines the boundary of the pre-encryption phase, from which the features are extracted and selected more accurately. Unlike the fixed thresholding employed by the extant works, DPBD-FE tracks the pre-encryption phase for each instance individually based on the first occurrence of any cryptography-related APIs. Then, an annotated Term Frequency-Inverse Document Frequency (aTF-IDF) technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks. The aTF-IDF overcomes the challenge of insufficient attack patterns during the early phases of the attack lifecycle. The experimental evaluation shows that DPBD-FE was able to determine the pre-encryption boundaries and extract the features related to this phase more accurately compared to related works.
Cloud computing plays an essential role as a source for outsourcing data to perform mining operations or other data processing, especially for data owners who do not have sufficient resources or experience to execute data mining techniques. However, the privacy of outsourced data is a serious concern. Most data owners are using anonymization-based techniques to prevent identity and attribute disclosures to avoid privacy leakage before outsourced data for mining over the cloud. In addition, data collection and dissemination in a resource-limited network such as sensor cloud require efficient methods to reduce privacy leakage. The main issue that caused identity disclosure is quasi-identifier (QID) linking. But most researchers of anonymization methods ignore the identification of proper QIDs. This reduces the validity of the used anonymization methods and may thus lead to a failure of the anonymity process. This paper introduces a new quasi-identifier recognition algorithm that reduces identity disclosure which resulted from QID linking. The proposed algorithm is comprised of two main stages: (1) attribute classification (or QID recognition) and (2) QID dimension identification. The algorithm works based on the reidentification of risk rate for all attributes and the dimension of QIDs where it determines the proper QIDs and their suitable dimensions. The proposed algorithm was tested on a real dataset. The results demonstrated that the proposed algorithm significantly reduces privacy leakage and maintains the data utility compared to recent related algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.