The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.
The current demand-supply scenario for fossil fuels requires an alternative energy source with cleaner combustion products whilst production of hydrogen from anaerobic digestion involves the utilization of waste materials and zero emission of greenhouse gasses. However, large scale industrial application has yet not been implemented due to numerous challenges in its production, storage, and transportation. This review study demonstrates that production of hydrogen from anaerobic digestion is potentially a worthy alternative regarding energy density, environmental impact, and cost. Moreover, dependence on fossil fuel systems in the future could be minimized when biohydrogen production is feasible from renewable energy sources.
The anaerobic digestion process in anaerobic membrane bioreactors is an effective way for waste management, energy sustainability and pollution control in the environment. This digestion process basically involves the production of volatile fatty acids and biohydrogen as intermediate products and methane as a final product. This paper compares the value of bioproducts from different stages of anaerobic membrane bioreactors through a thorough assessment. The value was assessed in terms of technical feasibility, economic assessment, environmental impact and impact on society. Even though the current research objective is more inclined to optimize the production of methane, the intermediate products could also be considered as economically attractive and environment friendly options. Hence, this is the first review study to correlate the idea into an anaerobic membrane bioreactor which is expected to guide future research pathways regarding anaerobic process and its bioproducts.
This study investigated the production of major volatile fatty acid (VFA) components in an anaerobic membrane bioreactor (AnMBR) to treat low-strength synthetic wastewater. No selective inhibition was applied for methane production and solvent-extraction method was used for VFA extraction. The results showed acetic and propionic acid were the predominant VFA components at pH 7.0 and 6.0 with concentrations of 1.444 ± 0.051 and 0.516 ± 0.032 mili-mol/l respectively. At pH 12.0 isobutyric acid was the major VFA component with a highest concentration of 0.712 ± 0.008 mili-mol/l. The highest VFA yield was 48.74 ± 1.5 mg VFA/ 100 mg CODfeed at pH 7.0. At different pH, AnMBR performance was evaluated in terms of COD, nutrient removal and membrane fouling rate. It was observed that the membrane fouled at a faster rate in both acidic and alkaline pH conditions, the slowest rate in membrane fouling was observed at pH 7.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.